PUBLICATION
            Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates
- Authors
- Bajoghli, B., Aghaallaei, N., Hess, I., Rode, I., Netuschil, N., Tay, B.H., Venkatesh, B., Yu, J.K., Kaltenbach, S.L., Holland, N.D., Diekhoff, D., Happe, C., Schorpp, M., and Boehm, T.
- ID
- ZDB-PUB-101018-34
- Date
- 2009
- Source
- Cell 138(1): 186-197 (Journal)
- Registered Authors
- Aghaallaei, Narges, Bajoghli, Baubak, Boehm, Tom, Hess, Isabell, Schorpp, Michael, Venkatesh, Byrappa
- Keywords
- CELLIMMUNO, EVO_ECOL, DEVBIO
- MeSH Terms
- 
    
        
        
            
                - Animals
- Lymphocytes/immunology
- Chemokines/genetics
- Chemokines/immunology
- Fishes/genetics
- Fishes/immunology
- Biological Evolution*
- Lampreys/genetics
- Lampreys/immunology
- Humans
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Chordata, Nonvertebrate/genetics
- Chordata, Nonvertebrate/immunology
- Thymus Gland/immunology*
- Molecular Sequence Data
- Gene Regulatory Networks*
- Vertebrates/genetics*
- Vertebrates/immunology*
 
- PubMed
- 19559469 Full text @ Cell
            Citation
        
        
            Bajoghli, B., Aghaallaei, N., Hess, I., Rode, I., Netuschil, N., Tay, B.H., Venkatesh, B., Yu, J.K., Kaltenbach, S.L., Holland, N.D., Diekhoff, D., Happe, C., Schorpp, M., and Boehm, T. (2009) Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates. Cell. 138(1):186-197.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                About 500 million years ago, a new type of adaptive immune defense emerged in basal jawed vertebrates, accompanied by morphological innovations, including the thymus. Did these evolutionary novelties arise de novo or from elaboration of ancient genetic networks? We reconstructed the genetic changes underlying thymopoiesis by comparative genome and expression analyses in chordates and basal vertebrates. The derived models of genetic networks were experimentally verified in bony fishes. Ancestral networks defining circumscribed regions of the pharyngeal epithelium of jawless vertebrates expanded in cartilaginous fishes to incorporate novel genes, notably those encoding chemokines. Correspondingly, novel networks evolved in lymphocytes of jawed vertebrates to control the expression of additional chemokine receptors. These complementary changes enabled unprecedented Delta/Notch signaling between pharyngeal epithelium and lymphoid cells that was exploited for specification to the T cell lineage. Our results provide a framework elucidating the evolution of key features of the adaptive immune system in jawed vertebrates.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    