FIGURE

Fig. 2

ID
ZDB-FIG-120412-21
Publication
Veleri et al., 2012 - Knockdown of Bardet-Biedl Syndrome Gene BBS9/PTHB1 Leads to Cilia Defects
Other Figures
All Figure Page
Back to All Figure Page
Fig. 2

Exon 5-targeted bbs9 splice morpholino affects eye development independent of p53 pathway.

(A) At 24 hpf, the p53-atgMO (1.5 ng) alone injection did not elicit a phenotype. The bbs9-spMO (1 ng) injection alone caused developmental defects in the eye, brain and tail of morphants. However, co-injection of p53-atgMO reduced the defects seen by the bbs9-spMO injection alone, though mild eye defect remained the tail becomes normal (bottom panel). (B) Higher magnification of morphants′ head region. Top, middle and bottom rows are 24-, 48- and 72-hpf, respectively. Left and right column of panels are p53-atgMO without and with bbs9-spMO, respectively. At 48 hpf the effect of bbs9-spMO injection on eye size visible (compare the arrows). The bbs9-spMO injection also resulted in hydrocephalous (compare the arrow heads). The defects seen at 48 hpf are weaker at 72 hpf. (C) The gel photograph of RT-PCR showing exon-skipping by bbs9-spMO. mRNA isolated from individual embryos was used for RT-PCR. U, C (4 and 6 ng) and B (1, 4, 6 ng) represent un-injected, control, and bbs9-spMO, respectively. Splice blocking gave an additional smaller (marked e5skip) band along with the original WT band. The bottom panel shows β-actin control for respective samples. (D) Quantification of the effect of morpholino(s) injection on eye size. X-axis shows the morpholinos used and time (hpf) of scoring. Y-axis shows eye size in pixels (mean ± SEM).

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data
Fish:
Knockdown Reagent:
Observed In:
Stage Range: Long-pec to Protruding-mouth

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS One