PUBLICATION

Susceptibility of DNA damage recognition activities linked to nucleotide excision and mismatch repair in zebrafish (Danio rerio) early and mid-early embryos to 2.5 to 4.5 °C heat stress

Authors
Paul, G.V., Sihite, A.C., Hsu, T.
ID
ZDB-PUB-230504-41
Date
2023
Source
Fish physiology and biochemistry   49(3): 515-527 (Journal)
Registered Authors
Hsu, Todd
Keywords
Mismatch repair, Nucleotide excision repair, Temperature, UV, Zebrafish
MeSH Terms
  • Animals
  • DNA Damage
  • DNA Mismatch Repair*
  • DNA Repair
  • Heat-Shock Response/genetics
  • Nucleotides/metabolism
  • Ultraviolet Rays
  • Zebrafish*/genetics
PubMed
37133645 Full text @ Fish Physiol. Biochem.
Abstract
Fish at early life stages are sensitive to temperature change because of their narrower temperature tolerance ranges. Initiated by damage detection, DNA mismatch repair (MMR) and nucleotide excision repair (NER) maintain genome integrity respectively by eliminating mismatched nucleotides and helix-distorting DNA lesions. As discharge of heated effluent from power plants may elevate water temperatures to only 2 to 6 °C higher than ambient, this study explored if temperatures within this range affected MMR and NER-linked damage detection activities in fish embryos using zebrafish (Danio rerio) embryo as a model organism. Exposure of early embryos at 10 h post fertilization (hpf) to a warmer temperature at + 4.5 °C for 30 min enhanced damage recognition activities targeting UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs) that distorted helical structures. Conversely, photolesions sensing activities were inhibited in 24 hpf mid-early embryos under the same stress conditions. A much higher temperature at + 8.5 °C imposed similar effects on UV damage detection. A mild heat stress at + 2.5 °C for 30 min, however, repressed both CPD and 6-4PP binding activities in 10 and 24 hpf embryos. Inhibition of damage recognition under mild heat stress impeded the overall NER capacity evidenced by a transcription-based repair assay. Warmer water temperatures at + 2.5 and + 4.5 °C also inhibited G-T mismatch binding activities in 10 and 24 hpf embryos, but G-T recognition was more sensitive to + 4.5 °C stress. Inhibition of G-T binding partially correlated with a downregulation of Sp1 transcription factor activity. Our results showed the potential of water temperature elevation within 2 to 4.5 °C to disturb DNA damage repair in fish at embryonic stages.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping