PUBLICATION

Parental mutations influence wild-type offspring via transcriptional adaptation

Authors
Jiang, Z., El-Brolosy, M.A., Serobyan, V., Welker, J.M., Retzer, N., Dooley, C.M., Jakutis, G., Juan, T., Fukuda, N., Maischein, H.M., Balciunas, D., Stainier, D.Y.R.
ID
ZDB-PUB-221126-5
Date
2022
Source
Science advances   8: eabj2029eabj2029 (Journal)
Registered Authors
Balciunas, Darius, Dooley, Christopher, Juan, Thomas, Maischein, Hans-Martin, Stainier, Didier
Keywords
none
MeSH Terms
  • Acclimatization*
  • Animals
  • Heterozygote
  • Mutation
  • RNA, Messenger/genetics
  • Zebrafish*/genetics
PubMed
36427314 Full text @ Sci Adv
Abstract
Transgenerational epigenetic inheritance (TEI) is mostly discussed in the context of physiological or environmental factors. Here, we show intergenerational and transgenerational inheritance of transcriptional adaptation (TA), a process whereby mutant messenger RNA (mRNA) degradation affects gene expression, in nematodes and zebrafish. Wild-type offspring of animals heterozygous for mRNA-destabilizing alleles display increased expression of adapting genes. Notably, offspring of animals heterozygous for nontranscribing alleles do not display this response. Germline-specific mutations are sufficient to induce TA in wild-type offspring, indicating that, at least for some genes, mutations in somatic tissues are not necessary for this process. Microinjecting total RNA from germ cells of TA-displaying heterozygous zebrafish can trigger TA in wild-type embryos and in their progeny, suggesting a model whereby mutant mRNAs in the germline trigger a TA response that can be epigenetically inherited. In sum, this previously unidentified mode of TEI reveals a means by which parental mutations can modulate the offspring's transcriptome.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping