PUBLICATION

Packaging development: how chromatin controls transcription in zebrafish embryogenesis

Authors
Horsfield, J.A.
ID
ZDB-PUB-190407-2
Date
2019
Source
Biochemical Society transactions   47(2): 713-724 (Review)
Registered Authors
Horsfield, Jules
Keywords
chromatin, developmental biology, enhancer, epigenetics, methylation, zebrafish
MeSH Terms
  • Animals
  • Chromatin/genetics
  • Chromatin/metabolism*
  • Embryonic Development/genetics
  • Embryonic Development/physiology
  • Epigenomics/methods
  • Gene Expression Regulation, Developmental/genetics
  • Gene Expression Regulation, Developmental/physiology
  • Zebrafish
PubMed
30952803 Full text @ Biochem Soc. Trans.
Abstract
How developmental gene expression is activated, co-ordinated and maintained is one of the biggest questions in developmental biology. While transcription factors lead the way in directing developmental gene expression, their accessibility to the correct repertoire of genes can depend on other factors such as DNA methylation, the presence of particular histone variants and post-translational modifications of histones. Collectively, factors that modify DNA or affect its packaging and accessibility contribute to a chromatin landscape that helps to control the timely expression of developmental genes. Zebrafish, perhaps better known for their strength as a model of embryology and organogenesis during development, are coming to the fore as a powerful model for interpreting the role played by chromatin in gene expression. Several recent advances have shown that zebrafish exhibit both similarities and differences to other models (and humans) in the way that they employ chromatin mechanisms of gene regulation. Here, I review how chromatin influences developmental transcriptional programmes during early zebrafish development, patterning and organogenesis. Lastly, I briefly highlight the importance of zebrafish chromatin research towards the understanding of human disease and transgenerational inheritance.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping