PUBLICATION

Live-cell imaging: new avenues to investigate retinal regeneration

Authors
Lahne, M., Hyde, D.R.
ID
ZDB-PUB-171003-5
Date
2017
Source
Neural regeneration research   12: 1210-1219 (Review)
Registered Authors
Hyde, David R.
Keywords
Müller glia, differentiation, interkinetic nuclear migration, live-cell imaging, multiphoton microscopy, neuronal progenitor cell, phagocytosis, retinal regeneration, tissue culture, zebrafish
MeSH Terms
none
PubMed
28966629 Full text @ Neural Regen Res
Abstract
Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping