PUBLICATION
            miR-19b Regulates Ventricular Action Potential Duration in Zebrafish
- Authors
 - Benz, A., Kossack, M., Auth, D., Seyler, C., Zitron, E., Juergensen, L., Katus, H.A., Hassel, D.
 - ID
 - ZDB-PUB-161103-6
 - Date
 - 2016
 - Source
 - Scientific Reports 6: 36033 (Journal)
 - Registered Authors
 - Hassel, David
 - Keywords
 - Cardiovascular biology, Molecular biology
 - MeSH Terms
 - 
    
        
        
            
                
- Animals
 - Myocardial Contraction/genetics
 - Action Potentials/genetics*
 - Humans
 - Zebrafish/genetics
 - Zebrafish/physiology
 - Arrhythmias, Cardiac/genetics*
 - Arrhythmias, Cardiac/physiopathology
 - Long QT Syndrome/genetics*
 - Long QT Syndrome/physiopathology
 - Potassium Channels/genetics
 - Disease Models, Animal
 - Heart Ventricles/physiopathology
 - MicroRNAs/genetics*
 
 - PubMed
 - 27805004 Full text @ Sci. Rep.
 
            Citation
        
        
            Benz, A., Kossack, M., Auth, D., Seyler, C., Zitron, E., Juergensen, L., Katus, H.A., Hassel, D. (2016) miR-19b Regulates Ventricular Action Potential Duration in Zebrafish. Scientific Reports. 6:36033.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Sudden cardiac death due to ventricular arrhythmias often caused by action potential duration (APD) prolongation is a common mode of death in heart failure (HF). microRNAs, noncoding RNAs that fine tune gene expression, are frequently dysregulated during HF, suggesting a potential involvement in the electrical remodeling process accompanying HF progression. Here, we identified miR-19b as an important regulator of heart function. Zebrafish lacking miR-19b developed severe bradycardia and reduced cardiac contractility. miR-19b deficient fish displayed increased sensitivity to AV-block, a characteristic feature of long QT syndrome in zebrafish. Patch clamp experiments from whole hearts showed that miR-19b deficient zebrafish exhibit significantly prolonged ventricular APD caused by impaired repolarization. We found that miR-19b directly and indirectly regulates the expression of crucial modulatory subunits of cardiac ion channels, and thereby modulates AP duration and shape. Interestingly, miR-19b knockdown mediated APD prolongation can rescue a genetically induced short QT phenotype. Thus, miR-19b might represent a crucial modifier of the cardiac electrical activity, and our work establishes miR-19b as a potential candidate for human long QT syndrome.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping