PUBLICATION
            CRISPRz: a database of zebrafish validated sgRNAs
- Authors
 - Varshney, G.K., Zhang, S., Pei, W., Adomako-Ankomah, A., Fohtung, J., Schaffer, K., Carrington, B., Maskeri, A., Slevin, C., Wolfsberg, T., Ledin, J., Sood, R., Burgess, S.M.
 - ID
 - ZDB-PUB-151007-9
 - Date
 - 2016
 - Source
 - Nucleic acids research 44(D1): D822-6 (Journal)
 - Registered Authors
 - Burgess, Shawn, Ledin, Johan, Pei, Wuhong, Sood, Raman, Varshney, Gaurav
 - Keywords
 - none
 - MeSH Terms
 - 
    
        
        
            
                
- Mice
 - Databases, Genetic*
 - Zebrafish/embryology
 - Zebrafish/genetics*
 - Gene Targeting
 - Mutagenesis
 - Animals
 - Humans
 - RNA*
 - CRISPR-Cas Systems*
 
 - PubMed
 - 26438539 Full text @ Nucleic Acids Res.
 
            Citation
        
        
            Varshney, G.K., Zhang, S., Pei, W., Adomako-Ankomah, A., Fohtung, J., Schaffer, K., Carrington, B., Maskeri, A., Slevin, C., Wolfsberg, T., Ledin, J., Sood, R., Burgess, S.M. (2016) CRISPRz: a database of zebrafish validated sgRNAs. Nucleic acids research. 44(D1):D822-6.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                CRISPRz (http://research.nhgri.nih.gov/CRISPRz/) is a database of CRISPR/Cas9 target sequences that have been experimentally validated in zebrafish. Programmable RNA-guided CRISPR/Cas9 has recently emerged as a simple and efficient genome editing method in various cell types and organisms, including zebrafish. Because the technique is so easy and efficient in zebrafish, the most valuable asset is no longer a mutated fish (which has distribution challenges), but rather a CRISPR/Cas9 target sequence to the gene confirmed to have high mutagenic efficiency. With a highly active CRISPR target, a mutant fish can be quickly replicated in any genetic background anywhere in the world. However, sgRNA's vary widely in their activity and models for predicting target activity are imperfect. Thus, it is very useful to collect in one place validated CRISPR target sequences with their relative mutagenic activities. A researcher could then select a target of interest in the database with an expected activity. Here, we report the development of CRISPRz, a database of validated zebrafish CRISPR target sites collected from published sources, as well as from our own in-house large-scale mutagenesis project. CRISPRz can be searched using multiple inputs such as ZFIN IDs, accession number, UniGene ID, or gene symbols from zebrafish, human and mouse.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping