PUBLICATION

Molecular Tattoo: Subcellular Confinement of Drug Effects

Authors
Képiró, M., Várkuti, B.H., Rauscher, A.A., Kellermayer, M.S., Varga, M., Málnási-Csizmadia, A.
ID
ZDB-PUB-150422-8
Date
2015
Source
Chemistry & Biology   22(4): 548-58 (Journal)
Registered Authors
Varga, Máté
Keywords
none
MeSH Terms
  • Animals
  • Azides/chemistry
  • Cell Line, Tumor
  • Embryo, Nonmammalian/metabolism
  • Fluorescent Dyes/chemistry
  • Fluorescent Dyes/metabolism
  • HeLa Cells
  • Humans
  • Microscopy, Fluorescence
  • Myosins/antagonists & inhibitors
  • Myosins/metabolism
  • Pharmaceutical Preparations/chemistry
  • Pharmaceutical Preparations/metabolism*
  • Photoaffinity Labels/chemistry
  • Photoaffinity Labels/metabolism
  • Ultraviolet Rays
  • Zebrafish/growth & development
PubMed
25892202 Full text @ Chem. Biol.
Abstract
Technological resources for sustained local control of molecular effects within organs, cells, or subcellular regions are currently unavailable, even though such technologies would be pivotal for unveiling the molecular actions underlying collective mechanisms of neuronal networks, signaling systems, complex machineries, and organism development. We present a novel optopharmacological technology named molecular tattooing, which combines photoaffinity labeling with two-photon microscopy. Molecular tattooing covalently attaches a photoreactive bioactive compound to its target by two-photon irradiation without any systemic effects outside the targeted area, thereby achieving subfemtoliter, long-term confinement of target-specific effects in vivo. As we demonstrated in melanoma cells and zebrafish embryos, molecular tattooing is suitable for dissecting collective activities by the separation of autonomous and non-autonomous molecular processes in vivo ranging from subcellular to organism level. Since a series of drugs are available for molecular tattoo, the technology can be implemented by a wide range of fields in the life sciences.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping