PUBLICATION

Deep conservation of wrist and digit enhancers in fish

Authors
Gehrke, A.R., Schneider, I., de la Calle-Mustienes, E., Tena, J.J., Gomez-Marin, C., Chandran, M., Nakamura, T., Braasch, I., Postlethwait, J.H., Gómez-Skarmeta, J.L., Shubin, N.H.
ID
ZDB-PUB-141224-10
Date
2015
Source
Proceedings of the National Academy of Sciences of the United States of America   112(3): 803-8 (Journal)
Registered Authors
Braasch, Ingo, de la Calle-Mustienes, Elisa, Gehrke, Andrew R., Gómez-Skarmeta, José Luis, Postlethwait, John H., Shubin, Neil, Tena, Juan
Keywords
Hox, autopod, development, evolution, gene regulation
Datasets
GEO:GSE61065, GEO:GSE61063
MeSH Terms
  • Animals
  • Enhancer Elements, Genetic
  • Fishes/anatomy & histology*
  • Fishes/genetics
  • Gene Expression Regulation, Developmental
  • Genes, Homeobox
  • Mice
PubMed
25535365 Full text @ Proc. Natl. Acad. Sci. USA
Abstract
There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hoxa gene expression, orchestrated by a set of enhancers located at the 5' end of each cluster. Despite a detailed mechanistic understanding of mouse limb development, interpretation of Hox expression patterns and their regulation in fish has spawned multiple hypotheses as to the origin and function of "autopod" enhancers throughout evolution. Using phylogenetic footprinting, epigenetic profiling, and transgenic reporters, we have identified and functionally characterized hoxD and hoxA enhancers in the genomes of zebrafish and the spotted gar, Lepisosteus oculatus, a fish lacking the whole genome duplication of teleosts. Gar and zebrafish "autopod" enhancers drive expression in the distal portion of developing zebrafish pectoral fins, and respond to the same functional cues as their murine orthologs. Moreover, gar enhancers drive reporter gene expression in both the wrist and digits of mouse embryos in patterns that are nearly indistinguishable from their murine counterparts. These functional genomic data support the hypothesis that the distal radials of bony fish are homologous to the wrist and/or digits of tetrapods.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping