ZFIN ID: ZDB-PUB-140513-73
Extracellular H(+) induces Ca (2+) signals in respiratory chemoreceptors of zebrafish
Abdallah, S.J., Jonz, M.G., Perry, S.F.
Date: 2015
Source: Pflugers Archiv : European journal of physiology   467(2): 399-413 (Journal)
Registered Authors: Jonz, Michael G., Perry, Steve F.
Keywords: none
MeSH Terms:
  • Animals
  • Calcium Signaling*
  • Cells, Cultured
  • Chemoreceptor Cells/metabolism*
  • Chemoreceptor Cells/physiology
  • Gills/cytology
  • Gills/physiology
  • Hypercapnia/metabolism*
  • Protons*
  • Respiration*
  • Zebrafish
PubMed: 24770973 Full text @ Pflügers Archiv. / Eur. J. Physiol.
Neuroepithelial cells (NECs) of the fish gill are respiratory chemoreceptors that detect changes in O2 and CO2/H(+) and are homologous to type I cells of the mammalian carotid body. In zebrafish (Danio rerio), stimulation of NECs by hypoxia or hypercapnia initiates inhibition of K(+) channels and subsequent membrane depolarisation. The goal of the present study was to further elucidate, in zebrafish NECs, the signalling pathways that underlie CO2/H(+) sensing and generate intracellular Ca(2+) ([Ca(2+)]i) signals. Breathing frequency was elevated maximally in fish exposed to 5 % CO2 (~37.5 mmHg). Measurement of [Ca(2+)]i in isolated NECs using Fura-2 imaging indicated that [Ca(2+)]i increased in response to acidic hypercapnia (5 % CO2, pH 6.6) and isocapnic acidosis (normocapnia, pH 6.6), but not to isohydric hypercapnia (5 % CO2, pH 7.6). Measurement of intracellular pH (pHi) using BCECF demonstrated a rapid decrease in pHi in response to acidic and isohydric hypercapnia, while isocapnic acidosis produced a smaller change in pHi. Intracellular acidification was reduced by the carbonic anhydrase inhibitor, acetazolamide, without affecting [Ca(2+)]i responses. Moreover, intracellular acidification using acetate (at constant extracellular pH) was without effect on [Ca(2+)]i. The acid-induced increase in [Ca(2+)]i persisted in the absence of extracellular Ca(2+) and was unaffected by Ca(2+) channel blockers (Cd(2+), Ni(2+) or nifedipine). The results of this study demonstrate that, unlike type I cells, extracellular H(+) is critical to the hypercapnia-induced increase in [Ca(2+)]i in NECs. The increase in [Ca(2+)]i occurs independently of pHi and appears to originate primarily from Ca(2+) derived from intracellular stores.