PUBLICATION

Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

Authors
Hsu, T., Huang, K.M., Tsai, H.T., Sung, S.T., and Ho, T.N.
ID
ZDB-PUB-121130-5
Date
2013
Source
Aquatic toxicology (Amsterdam, Netherlands)   126C: 9-16 (Journal)
Registered Authors
Hsu, Todd
Keywords
cadmium, DNA mismatch repair, embryo, MutS homolog, zebrafish
MeSH Terms
  • Animals
  • Antioxidants/pharmacology
  • Cadmium/toxicity*
  • DNA-Binding Proteins/genetics*
  • Down-Regulation/drug effects*
  • Embryo, Nonmammalian/drug effects
  • MutS Homolog 2 Protein/genetics*
  • Oxidative Stress/drug effects*
  • Protein Binding/drug effects
  • Water Pollutants, Chemical/toxicity*
  • Zebrafish/embryology
  • Zebrafish/physiology*
PubMed
23143036 Full text @ Aquat. Toxicol.
CTD
23143036
Abstract

DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3–5 μM for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40–50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), d-mannitol or N-acetylcysteine (NAC) at 1–10 μM restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 μM. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore excluding the involvement of Sp1 inactivation in Cd-induced MSH gene inhibition in zebrafish embryos.

Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping