PUBLICATION

Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

Authors
Lauter, G., Söll, I., and Hauptmann, G.
ID
ZDB-PUB-110511-5
Date
2011
Source
Neural Development   6: 10 (Journal)
Registered Authors
Hauptmann, Giselbert, Söll, Iris
Keywords
none
MeSH Terms
  • Animals
  • Antibodies/chemistry
  • Antisense Elements (Genetics)
  • Brain/embryology*
  • Brain Chemistry/genetics*
  • Brain Chemistry/physiology*
  • Dextran Sulfate
  • Gene Expression/physiology*
  • Gene Expression Regulation, Developmental
  • Glycine/chemistry
  • Haptens
  • Horseradish Peroxidase/metabolism
  • Image Processing, Computer-Assisted
  • In Situ Hybridization, Fluorescence
  • Microscopy, Fluorescence
  • Signal Processing, Computer-Assisted
  • Tyramine/chemical synthesis
  • Tyramine/physiology
  • Viscosity
  • Zebrafish/physiology*
PubMed
21466670 Full text @ Neural Dev.
Abstract

BACKGROUND:

In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD) activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected.

RESULTS:

We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA). Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH) experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts in different colors in whole-mount zebrafish embryos.

CONCLUSIONS:

Development of a multicolor FISH procedure allowed the comparison of transcript gene expression domains in the embryonic zebrafish brain to a cellular level. Likewise, this method should be applicable for mRNA colocalization studies in any other tissues or organs. The key optimization steps of this method for use in zebrafish can easily be implemented in whole-mount FISH protocols of other organisms. Moreover, our improved reaction conditions may be beneficial in any application that relies on a TSA/POD-mediated detection system, such as immunocytochemical or immunohistochemical methods.

Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping