ZFIN ID: ZDB-LAB-080129-1
Scholpp Lab
PI/Director: Scholpp, Steffen
Contact Person: Scholpp, Steffen
Email: s.scholpp@exeter.ac.uk
URL: http://biosciences.exeter.ac.uk/staff/index.php?web_id=Steffen_Scholpp
Address: Living System Institute University of Exeter Exeter, UK EX4 4QD
Country: United Kingdom
Phone:
Fax:
Line Designation: uex


GENOMIC FEATURES ORIGINATING FROM THIS LAB
Show all 2 genomic features


STATEMENT OF RESEARCH INTERESTS
Wnt signalling is one of the most important signalling networks in development and homeostasis. Wnt malfunction is implicated in various forms of disease, including cancer and degenerative diseases. Activation of this signalling networks relies on proper dissemination of Wnt proteins in a tissue. Albeit 30 years of Wnt research, we still do not understand how the distribution of signalling molecules is controlled. However, this knowledge is important because it will open up completely new strategies to control Wnt signalling in development, regeneration and diseases by altering its transport route. Using zebrafish embryos, we have shown that extracellular Wnt trafficking requires signalling filopodia known as cytonemes. We want to understand the molecular mechanism controlling cytoneme emergence to allow Wnt proteins transport through a vertebrate tissue over hundreds of micrometers and to establish an effective signalling gradient.


LAB MEMBERS
Brunt, Lucy Post-Doc Ono, Yosuke Post-Doc Bamsey, Jessica Graduate Student
Cooper, Emma Graduate Student Dawes, Michael Graduate Student Fang, Kevin Graduate Student
Sutton, Gemma Graduate Student Bhandari, Ashish Technical Staff Sanders, Kelly Technical Staff


ZEBRAFISH PUBLICATIONS OF LAB MEMBERS
Zhang, C., Brunt, L., Ono, Y., Rogers, S., Scholpp, S. (2023) Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature. 625(7993):126-133
Rogers, S., Zhang, C., Anagnostidis, V., Liddle, C., Fishel, M.L., Gielen, F., Scholpp, S. (2023) Cancer-associated fibroblasts influence Wnt/PCP signaling in gastric cancer cells by cytoneme-based dissemination of ROR2. Proceedings of the National Academy of Sciences of the United States of America. 120:e2217612120e2217612120
Routledge, D., Rogers, S., Ono, Y., Brunt, L., Meniel, V., Tornillo, G., Ashktorab, H., Phesse, T., Scholpp, S. (2022) The scaffolding protein Flot2 promotes cytoneme-based transport of Wnt3 in gastric cancer. eLIFE. 11:
Winter, M.J., Ono, Y., Ball, J.S., Walentinsson, A., Michaelsson, E., Tochwin, A., Scholpp, S., Tyler, C.R., Rees, S., Hetheridge, M.J., Bohlooly-Y, M. (2022) A Combined Human in Silico and CRISPR/Cas9-Mediated in Vivo Zebrafish Based Approach to Provide Phenotypic Data for Supporting Early Target Validation. Frontiers in pharmacology. 13:827686
Brunt, L., Greicius, G., Rogers, S., Evans, B.D., Virshup, D.M., Wedgwood, K.C.A., Scholpp, S. (2021) Vangl2 promotes the formation of long cytonemes to enable distant Wnt/β-catenin signaling. Nature communications. 12:2058
Scholpp, S. (2020) Introduction: in vivo cell biology in zebrafish. Histochemistry and cell biology. 154(5):457-461
Dawes, M.L., Soeller, C., Scholpp, S. (2020) Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo. Histochemistry and cell biology. 154(5):507-519
Rosenbauer, J., Zhang, C., Mattes, B., Reinartz, I., Wedgwood, K., Schindler, S., Sinner, C., Scholpp, S., Schug, A. (2020) Modeling of Wnt-mediated tissue patterning in vertebrate embryogenesis. PLoS Computational Biology. 16:e1007417
Bosze, B., Ono, Y., Mattes, B., Sinner, C., Gourain, V., Thumberger, T., Tlili, S., Wittbrodt, J., Saunders, T.E., Strähle, U., Schug, A., Scholpp, S. (2020) Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochemistry and cell biology. 154(5):463-480
Yin, J., Lee, R., Ono, Y., Ingham, P.W., Saunders, T.E. (2018) Spatiotemporal Coordination of FGF and Shh Signaling Underlies the Specification of Myoblasts in the Zebrafish Embryo. Developmental Cell. 46:735-750.e4
Mattes, B., Dang, Y., Greicius, G., Kaufmann, L.T., Prunsche, B., Rosenbauer, J., Stegmaier, J., Mikut, R., Özbek, S., Nienhaus, G.U., Schug, A., Virshup, D.M., Scholpp, S. (2018) Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. eLIFE. 7:
Liu, T.L., Upadhyayula, S., Milkie, D.E., Singh, V., Wang, K., Swinburne, I.A., Mosaliganti, K.R., Collins, Z.M., Hiscock, T.W., Shea, J., Kohrman, A.Q., Medwig, T.N., Dambournet, D., Forster, R., Cunniff, B., Ruan, Y., Yashiro, H., Scholpp, S., Meyerowitz, E.M., Hockemeyer, D., Drubin, D.G., Martin, B.L., Matus, D.Q., Koyama, M., Megason, S.G., Kirchhausen, T., Betzig, E. (2018) Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science (New York, N.Y.). 360(6386):
Brunt, L., Scholpp, S. (2017) The function of endocytosis in Wnt signaling.. Cellular and molecular life sciences : CMLS. 75(5):785-795
Brunt, L.H., Begg, K., Kague, E., Cross, S., Hammond, C.L. (2017) Wnt signalling controls the response to mechanical loading during Zebrafish joint development. Development (Cambridge, England). 144(15):2798-2809
Gurung, R., Ono, Y., Baxendale, S., Lee, S.L., Moore, S., Calvert, M., Ingham, P.W. (2017) The Zebrafish frozen Mutant Is a Model for Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B. Genetics. 205(2):725-735
Brunt, L.H., Roddy, K.A., Rayfield, E.J., Hammond, C.L. (2016) Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics. Journal of visualized experiments : JoVE. (118)
Brunt, L.H., Skinner, R.E., Roddy, K.A., Araujo, N.M., Rayfield, E.J., Hammond, C.L. (2016) Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis. Osteoarthritis and Cartilage. 24(11):1940-1950
Brinkmann, E.M., Mattes, B., Kumar, R., Hagemann, A.I., Gradl, D., Scholpp, S., Steinbeisser, H., Kaufmann, L.T., Ozbek, S. (2016) Secreted frizzled-related protein 2 (sFRP2) redirects non-canonical Wnt signaling from Fz7 to Ror2 during vertebrate gastrulation. The Journal of biological chemistry. 291(26):13730-42
Stanganello, E., Scholpp, S. (2016) Role of cytonemes in Wnt transport.. Journal of Cell Science. 129(4):665-72
Brunt, L. (2016) The role of biomechanics and signalling in zebrafish joint morphogenesis. Ph.D. Thesis.
Brunt, L.H., Norton, J.L., Bright, J.A., Rayfield, E.J., Hammond, C.L. (2015) Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development. Journal of biomechanics. 48(12):3112-22
Hirschbiel, A.F., Geyer, S., Yameen, B., Welle, A., Nikolov, P., Giselbrecht, S., Scholpp, S., Delaittre, G., Barner-Kowollik, C. (2015) Photolithographic patterning of 3D-formed polycarbonate films for targeted cell guiding. Advanced materials (Deerfield Beach, Fla.). 27:2621-6
Ono, Y., Yu, W., Jackson, H.E., Parkin, C.A., Ingham, P.W. (2015) Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor. Differentiation; research in biological diversity. 89(3-4):77-86
Jackson, H.E., Ono, Y., Wang, X., Elworthy, S., Cunliffe, V.T., Ingham, P.W. (2015) The role of Sox6 in zebrafish muscle fiber type specification. Skeletal muscle. 5:2
Stanganello, E., Hagemann, A.I., Mattes, B., Sinner, C., Meyen, D., Weber, S., Schug, A., Raz, E., Scholpp, S. (2015) Filopodia-based Wnt transport during vertebrate tissue patterning. Nature communications. 6:5846
Hagemann, A.I., Kurz, J., Kauffeld, S., Chen, Q., Reeves, P.M., Weber, S., Schindler, S., Davidson, G., Kirchhausen, T., Scholpp, S. (2014) Correction: In vivo analysis of formation and endocytosis of the Wnt/²-Catenin signaling complex in zebrafish embryos. Journal of Cell Science. 127:5331
Hagemann, A.I., Kurz, J., Kauffeld, S., Chen, Q., Reeves, P.M., Weber, S., Schindler, S., Davidson, G., Kirchhausen, T., Scholpp, S. (2014) In vivo analysis of formation and endocytosis of the Wnt/β-Catenin signaling complex in zebrafish embryos. Journal of Cell Science. 127(Pt 18):3970-82
Chatterjee, M., Guo, Q., Weber, S., Scholpp, S., and Li, J.Y. (2014) Pax6 regulates the formation of the habenular nuclei by controlling the temporospatial expression of Shh in the diencephalon in vertebrates. BMC Biology. 12(1):13
Rengarajan, C., Matzke, A., Reiner, L., Orian-Rousseau, V., and Scholpp, S. (2014) Endocytosis of Fgf8 is a double-stage process and regulates spreading and signaling. PLoS One. 9(1):e86373
Ikeda, D., Ono, Y., Hirano, S., Kan-No, N., and Watabe, S. (2013) Lampreys have a single gene cluster for the fast skeletal Myosin heavy chain gene family. PLoS One. 8(12):e85500
Scholpp, S., Poggi, L., and Zigman, M. (2013) Brain on the stage - spotlight on nervous system development in zebrafish: EMBO practical course, KIT, Sept. 2013. Neural Development. 8:23
Schmidt, R., Strähle, U., and Scholpp, S. (2013) Neurogenesis in zebrafish -- from embryo to adult. Neural Development. 8(1):3
Mitchell, R.E., Huitema, L.F., Skinner, R.H., Brunt, L.H., Severn, C., Schulte-Merker, S., and Hammond, C.L. (2013) New tools for studying osteoarthritis genetics in zebrafish. Osteoarthritis and Cartilage. 21(2):269-278
Mattes, B., Weber, S., Peres, J., Chen, Q., Davidson, G., Houart, C., and Scholpp, S. (2012) Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Development. 7(1):12
Peukert, D., Weber, S., Lumsden, A., and Scholpp, S. (2011) Lhx2 and lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating wnt signaling. PLoS Biology. 9(12):e1001218
Wang, X., Ono, Y., Tan, S.C., Chai, R.J., Parkin, C., and Ingham, P.W. (2011) Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development (Cambridge, England). 138(20):4399-404
Yasmin, L., Kinoshita, S., Asaduzzaman, M., Akolkar, D.B., Ikeda, D., Ono, Y., and Watabe, S. (2011) A 5'-flanking region of embryonic-type myosin heavy chain gene, MYH(M743)(-)(2), from torafugu Takifugu rubripes regulates developmental muscle-specific expression. Comparative biochemistry and physiology. Part D, Genomics & proteomics. 6(1):76-81
Fassier, C., Hutt, J.A., Scholpp, S., Lumsden, A., Giros, B., Nothias, F., Schneider-Maunoury, S., Houart, C., and Hazan, J. (2010) Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nature Neuroscience. 13(11):1380-1387
Scholpp, S., and Lumsden, A. (2010) Building a bridal chamber: development of the thalamus. Trends in neurosciences. 33(8):373-380
Scholpp, S., Delogu, A., Gilthorpe, J., Peukert, D., Schindler, S., and Lumsden, A. (2009) Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus. Proceedings of the National Academy of Sciences of the United States of America. 106(47):19895-19900
Yu, S.R., Burkhardt, M., Nowak, M., Ries, J., Petrášek, Z., Scholpp, S., Schwille, P., and Brand, M. (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature. 461(7263):533-536
Scholpp, S., Foucher, I., Staudt, N., Peukert, D., Lumsden, A., and Houart, C. (2007) Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development (Cambridge, England). 134(17):3167-3176
Wendl, T., Adzic, D., Schoenebeck, J.J., Scholpp, S., Brand, M., Yelon, D., and Rohr, K.B. (2007) Early developmental specification of the thyroid gland depends on han-expressing surrounding tissue and on FGF signals. Development (Cambridge, England). 134(15):2871-2879
Erickson, T., Scholpp, S., Brand, M., Moens, C.B., and Waskiewicz, A. Jan (2007) Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries. Developmental Biology. 301(2):504-517
Scholpp, S., Wolf, O., Brand, M., and Lumsden, A. (2006) Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development (Cambridge, England). 133(5):855-864
Scholpp, S., and Brand, M. (2004) Endocytosis controls spreading and effective signaling range of fgf8 protein. Current biology : CB. 14(20):1834-1841
Scholpp, S., Groth, C., Lohs, C., Lardelli, M., and Brand, M. (2004) Zebrafish fgfr1 is a member of the fgf8 synexpression group and is required for fgf8 signalling at the midbrain-hindbrain boundary. Development genes and evolution. 214(6):285-295
Scholpp, S. and Brand, M. (2003) Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants. Developmental Dynamics : an official publication of the American Association of Anatomists. 228(3):313-322
Scholpp, S., Lohs, C., and Brand, M. (2003) Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development (Cambridge, England). 130(20):4881-4893
Scholpp, S. (2003) Genetic and cell biological mechanisms maintaining the forebrain-midbrain territory in zebrafish. Ph.D. Thesis. :141p
Picker, A., Scholpp, S., Bohli, H., Takeda, H., and Brand, M. (2002) A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines. Development (Cambridge, England). 129(13):3227-3239
Scholpp, S. and Brand, M. (2001) Morpholino-induced knockdown of zebrafish engrailed genes eng2 and eng3 reveals redundant and unique functions in midbrain–hindbrain boundary development. Genesis (New York, N.Y. : 2000). 30(3):129-133