ZFIN ID: ZDB-LAB-200114-1
Hinits Lab
PI/Director: Hinits, Yaniv
Contact Person: Hinits, Yaniv
Email: yaniv.hinits@kcl.ac.uk
URL: http://www.kcl.ac.uk/lsm/research/divisions/randall/research/sections/signalling/hinits/hinitsyaniv
Address: Randall Centre of Cell and Molecular Biophysics School of Basic and Medical Biosciences Faculty of Life Sciences and Medicine 3rd floor, New Hunt¹s House King's College London-Guy's Campus London SE1 1UL
Country: United Kingdom
Phone: 44-20-78486444
Fax: 44-20-78486435
Line Designation: kg


GENOMIC FEATURES ORIGINATING FROM THIS LAB
Show all 3 genomic features


STATEMENT OF RESEARCH INTERESTS
My research interests are the molecular processes that drive muscle
differentiation (both skeletal and cardiac), what cause muscle cells to
acquire different traits and function, with emphasis on the formation of
the sarcomere, the contractile unit in muscle fibres. I work mainly in
zebrafish but also with human iPSCs-cardiomyocytes.


LAB MEMBERS
O'Brien, Ailbhe Graduate Student


ZEBRAFISH PUBLICATIONS OF LAB MEMBERS
Kula-Alwar, D., Marber, M.S., Hughes, S.M., Hinits, Y. (2020) Mef2c factors are required for early but not late addition of cardiomyocytes to the ventricle. Developmental Biology. 470:95-107
Osborn, D.P.S., Li, K., Cutty, S.J., Nelson, A.C., Wardle, F.C., Hinits, Y., Hughes, S.M. (2020) Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis. Development (Cambridge, England). 147(8):
Kague, E., Hughes, S.M., A Lawrence, E., Cross, S., Martin-Silverstone, E., Hammond, C.L., Hinits, Y. (2019) Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 33(8):9116-9130
Ganassi, M., Badodi, S., Ortuste Quiroga, H.P., Zammit, P.S., Hinits, Y., Hughes, S.M. (2018) Myogenin promotes myocyte fusion to balance fibre number and size. Nature communications. 9:4232
Ganassi, M., Badodi, S., Polacchini, A., Baruffaldi, F., Battini, R., Hughes, S.M., Hinits, Y., Molinari, S. (2014) Distinct functions of alternatively spliced isoforms encoded by zebrafish mef2ca and mef2cb. Biochimica et biophysica acta. Gene regulatory mechanisms. 1839(7):559-70
Kulaveerasingam, D., Hinits, Y., Hughes, S. (2014) Modelling cardiac hypertrophy/hyperplasia in the zebrafish. Cardiovascular research. 103 Suppl 1:S58
Yogev, O., Williams, V.C., Hinits, Y., and Hughes, S.M. (2013) eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation. PLoS Biology. 11(10):e1001679
Minchin, J.E., Williams, V.C., Hinits, Y., Low, S., Tandon, P., Fan, C.M., Rawls, J.F., and Hughes, S.M. (2013) Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion. Development (Cambridge, England). 140(14):2972-2984
Nadjar-Boger, E., Hinits, Y., and Funkenstein, B. (2012) Structural and functional analysis of myostatin-2 promoter alleles from the marine fish Sparus aurata: Evidence for strong muscle-specific promoter activity and post-transcriptional regulation. Molecular and Cellular Endocrinology. 361(1-2):51-68
Hinits, Y., Pan, L., Walker, C., Dowd, J., Moens, C.B., and Hughes, S.M. (2012) Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Developmental Biology. 369(2):199-210
Hinits, Y., Williams, V.C., Sweetman, D., Donn, T.M., Ma, T.P., Moens, C.B., and Hughes, S.M. (2011) Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Developmental Biology. 358(1):102-12
Osborn, D.P., Li, K., Hinits, Y., and Hughes, S.M. (2011) Cdkn1c drives muscle differentiation through a positive feedback loop with Myod. Developmental Biology. 350(2):464-475
Hinits, Y., Osborn, D.P., and Hughes, S.M. (2009) Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development (Cambridge, England). 136(3):403-414
Diogo, R., Hinits, Y., and Hughes, S. (2008) Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Developmental Biology. 8:24
Böhm, S., Jin, H., Hughes, S.M., Roberts, R.G., and Hinits, Y. (2008) Dystrobrevin and dystrophin family gene expression in zebrafish. Gene expression patterns : GEP. 8(2):71-78
Hinits, Y., Osborn, D.P., Carvajal, J.J., Rigby, P.W., and Hughes, S.M. (2007) Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene expression patterns : GEP. 7(7):738-745
Hinits, Y., and Hughes, S.M. (2007) Mef2s are required for thick filament formation in nascent muscle fibres. Development (Cambridge, England). 134(13):2511-2519
Hammond, C.L., Hinits, Y., Osborn, D.P., Minchin, J.E., Tettamanti, G., and Hughes, S.M. (2007) Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Developmental Biology. 302(2):504-521
Jin, H., Tan, S., Hermanowski, J., Bohem, S., Pacheco, S., McCaule, J.M., Greener, M.J., Hinits, Y., Hughes, S.M., Sharpe, P.T., Roberts, R.G., (2007) The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms. BMC Genomics. 8(1):19
Mann, C.J., Hinits, Y., and Hughes, S.M. (2006) Comparison of neurolin (ALCAM) and neurolin-like cell adhesion molecule (NLCAM) expression in zebrafish. Gene expression patterns : GEP. 6(8):952-963