Dissecting hematopoiesis and disease using the zebrafish

Amatruda, J.F. and Zon, L.I.
Developmental Biology   216(1): 1-15 (Review)
Registered Authors
Amatruda, James F., Zon, Leonard I.
zebrafish; hematopoiesis; genetics; disease model
MeSH Terms
  • Animals
  • Disease Models, Animal
  • Gene Expression Regulation, Developmental/genetics
  • Hematopoiesis/genetics
  • Hematopoiesis/physiology*
  • Hematopoietic Stem Cells/physiology
  • Humans
  • In Situ Hybridization
  • Zebrafish/blood
  • Zebrafish/embryology*
  • Zebrafish/genetics
10588859 Full text @ Dev. Biol.
The study of blood has often defined paradigms that are relevant to the biology of other vertebrate organ systems. As examples, stem cell physiology and the structure of the membrane cytoskeleton were first described in hematopoietic cells. Much of the reason for these successes resides in the ease with which blood cells can be isolated and manipulated in vitro. The cell biology of hematopoiesis can also be illuminated by the study of human disease states such as anemia, immunodeficiency, and leukemia. The sequential development of the blood system in vertebrates is characterized by ventral mesoderm induction, hematopoietic stem cell specification, and subsequent cell lineage differentiation. Some of the key regulatory steps in this process have been uncovered by studies in mouse, chicken, and Xenopus. More recently, the genetics of the zebrafish (Danio rerio) have been employed to define novel points of regulation of the hematopoietic program. In this review, we describe the advantages of the zebrafish system for the study of blood cell development and the initial success of the system in this pursuit. The striking similarity of zebrafish mutant phenotypes and human diseases emphasizes the utility of this model system for elucidating pathophysiologic mechanisms. New screens for lineage-specific mutations are beginning, and the availability of transgenics promises a better understanding of lineage-specific gene expression. The infrastructure of the zebrafish system is growing with an NIH-directed genome initiative, providing a detailed map of the zebrafish genome and an increasing number of candidate genes for the mutations. The zebrafish is poised to contribute greatly to our understanding of normal and disease-related hematopoiesis.
Genes / Markers
Show all Figures
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Engineered Foreign Genes