PUBLICATION

Ontogenetically distinct neutrophils differ in function and transcriptional profile in zebrafish

Authors
García-López, J.P., Grimaldi, A., Chen, Z., Meneses, C., Bravo-Tello, K., Bresciani, E., Banderas, A., Burgess, S.M., Hernández, P.P., Feijoo, C.G.
ID
ZDB-PUB-230816-44
Date
2023
Source
Nature communications   14: 49424942 (Journal)
Registered Authors
Bresciani, Erica, Burgess, Shawn, Feijoo, Carmen G.
Keywords
none
MeSH Terms
  • Animals
  • Animals, Genetically Modified
  • Hematopoiesis
  • Neutrophils*/metabolism
  • Zebrafish*/genetics
  • Zebrafish Proteins/genetics
  • Zebrafish Proteins/metabolism
PubMed
37582932 Full text @ Nat. Commun.
Abstract
The current view of hematopoiesis considers leukocytes on a continuum with distinct developmental origins, and which exert non-overlapping functions. However, there is less known about the function and phenotype of ontogenetically distinct neutrophil populations. In this work, using a photoconvertible transgenic zebrafish line; Tg(mpx:Dendra2), we selectively label rostral blood island-derived and caudal hematopoietic tissue-derived neutrophils in vivo during steady state or upon injury. By comparing the migratory properties and single-cell expression profiles of both neutrophil populations at steady state we show that rostral neutrophils show higher csf3b expression and migration capacity than caudal neutrophils. Upon injury, both populations share a core transcriptional profile as well as subset-specific transcriptional signatures. Accordingly, both rostral and caudal neutrophils are recruited to the wound independently of their distance to the injury. While rostral neutrophils respond uniformly, caudal neutrophils respond heterogeneously. Collectively, our results reveal that co-existing neutrophils populations with ontogenically distinct origin display functional differences.
Errata / Notes
This article is corrected by ZDB-PUB-230901-62.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping