PUBLICATION

Antioxidant Carboxymethyl Chitosan Carbon Dots with Calcium Doping Achieve Ultra-Low Calcium Concentration for Iron-Induced Osteoporosis Treatment by Effectively Enhancing Calcium Bioavailability in Zebrafish

Authors
Yu, L., Li, X., He, M., Wang, Q., Chen, C., Li, F., Li, B., Li, L.
ID
ZDB-PUB-230330-39
Date
2023
Source
Antioxidants (Basel, Switzerland)   12(3): (Journal)
Registered Authors
Li, Li
Keywords
antioxidant, calcium bioavailability, carbon dots, iron overload, osteoporosis
MeSH Terms
none
PubMed
36978831 Full text @ Antioxidants (Basel)
Abstract
Iron overloads osteoporosis mainly occurs to postmenopausal women and people requiring repeated blood transfusions. Iron overload increases the activity of osteoclasts and decreases the activity of osteoblasts, leading to the occurrence of osteoporosis. Conventional treatment options include calcium supplements and iron chelators. However, simple calcium supplementation is not effective, and it does not have a good therapeutic effect. Oxidative stress is one of the triggers for osteoporosis. Therefore, the study focuses on the antioxidant aspect of osteoporosis treatment. The present work revealed that antioxidant carboxymethyl chitosan-based carbon dots (AOCDs) can effectively treat iron overload osteoporosis. More interestingly, the functional modification of AOCDs by doping calcium gluconate (AOCDs:Ca) is superior to the use of any single component. AOCDs:Ca have the dual function of antioxidant and calcium supplement. AOCDs:Ca effectively improve the bioavailability of calcium and achieve ultra-low concentration calcium supplement for the treatment of iron-induced osteoporosis in zebrafish.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping