PUBLICATION

Anti-osteoporosis effects of Anemarrhenae Rhizoma / Phellodendri Chinensis Cortex herb pair and its major active components in diabetic rats and zebrafish

Authors
Xu, P., Lin, B., Deng, X., He, S., Chen, N., Wang, N.
ID
ZDB-PUB-220412-6
Date
2022
Source
Journal of ethnopharmacology   293: 115269 (Journal)
Registered Authors
Keywords
Alkaloids, Diabetes, Flavonoids, Osteoporosis, Traditional Chinese medicine
MeSH Terms
  • Anemarrhena*
  • Animals
  • Diabetes Mellitus, Experimental*/chemically induced
  • Diabetes Mellitus, Experimental*/drug therapy
  • Drugs, Chinese Herbal*/chemistry
  • Drugs, Chinese Herbal*/pharmacology
  • Drugs, Chinese Herbal*/therapeutic use
  • Osteoporosis*/chemically induced
  • Osteoporosis*/drug therapy
  • Osteoporosis*/metabolism
  • Rats
  • Streptozocin
  • Zebrafish
PubMed
35398497 Full text @ J. Ethnopharmacol.
Abstract
Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been widely used in traditional Chinese medicines for the treatment of diabetic osteoporosis. However, the anti-diabetic osteoporotic active components of AR/PCC remain unclear. This study aimed to explore the major active ingredients in AR/PCC for its protective effects against bone deterioration induced by diabetes.
The aqueous extracts of AR/PCC with different proportions (AR:PCC = 1:3, 1:2, 1:1, 2:1 and 3:1, w/w) were prepared. Streptozotocin-induced diabetic rats were orally administrated with the AR/PCC extracts. The absorbed phytochemical compounds in serum of diabetic rats were identified by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry method and their contents in the AR/PCC extracts were determined by high performance liquid chromatography-ultraviolet detector-evaporative light scattering detector method. The absorbed compounds in the extracts were considered as the major potential active components in AR/PCC, and their combination was defined as M-AR/PCC. A component-knockout approach was applied to evaluate the contribution of each compound in M-AR/PCC. The larvae and adults of diabetic zebrafish models were then used to evaluated the anti-diabetic osteoporotic performance of the M-AR/PCC. The real-time reverse transcription polymerase chain reaction technique was applied to study the regulation effects of M-AR/PCC on osteogenesis and osteoclastgensis in diabetic zebrafish models.
The phenotypes of diabetic osteoporosis rats induced by streptozotocin were reversed by the oral administration of AR/PCC extracts with different ratios, as evidenced by the increased bone mineral density, bone volume density, trabecular thickness, trabecular number, and decreased trabecular separation of femoral metaphysis. Seven phytochemical compounds were detected in the serum and their contents in AR/PCC varied dramatically with different proportions, including 1 xanthone glycoside and 6 alkaloids. By using diabetic zebrafish larvae model and compound-knockout strategy, each compound in M-AR/PCC were proved to play an indispensable role in the positive regulatory actions in the bone mass of diabetic zebrafish. Furthermore, the herb pair with a ratio of 1:1 and the related M-AR/PCC showed the best therapeutic effects on diabetic osteoporosis. They showed similar performances on the inhibition of the tartrate-resistant acid phosphatase activity and the promotion of the alkaline phosphatase activity in diabetic adult zebrafish model. The M-AR/PCC treatment could decrease the blood glucose, upregulate the mRNA expression levels of osteoblast-related genes (alp, runx2b and opg) and downregulate the expression of osteoclast-related genes (acp5α, rankl and sost) in streptozotocin-induced zebrafish.
AR/PCC herb pair and its major active components possess potent anti-diabetic osteoporotic effect on streptozotocin-induced in vivo models. The combination of the seven active compounds derived from AR/PCC herbal pair could be a potential agent for protection against osteoporosis associated with diabetes.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping