PUBLICATION

Shear stress switches the association of endothelial enhancers from ETV/ETS to KLF transcription factor binding sites

Authors
Tsaryk, R., Yucel, N., Leonard, E.V., Diaz, N., Bondareva, O., Odenthal-Schnittler, M., Arany, Z., Vaquerizas, J.M., Schnittler, H., Siekmann, A.F.
ID
ZDB-PUB-220323-30
Date
2022
Source
Scientific Reports   12: 4795 (Journal)
Registered Authors
Siekmann, Arndt Friedrich
Keywords
none
Datasets
GEO:GSE198221
MeSH Terms
  • Animals
  • Binding Sites
  • Cells, Cultured
  • Chromatin*/metabolism
  • Human Umbilical Vein Endothelial Cells/metabolism
  • Humans
  • Stress, Mechanical
  • Transcription Factors/genetics
  • Transcription Factors/metabolism
  • Zebrafish*/genetics
  • Zebrafish*/metabolism
PubMed
35314737 Full text @ Sci. Rep.
Abstract
Endothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited. Here, we set out to study alterations in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 h of laminar shear stress. Our results show a correlation of gained and lost enhancers with up and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized the shear stress response in ECs of zebrafish embryos using RNA-Seq. Our results lay the groundwork for the exploration of shear stress responsive elements in controlling EC biology.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping