PUBLICATION

MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling

Authors
Lai, C.Y., Yeh, K.Y., Lin, C.Y., Hsieh, Y.W., Lai, H.H., Chen, J.R., Hsu, C.C., Her, G.M.
ID
ZDB-PUB-210307-1
Date
2021
Source
Cancers   13(5): (Journal)
Registered Authors
Her, Guor Muor
Keywords
fibrogenesis, hepatic steatosis, liver cancer, microRNAs, steatohepatitis
MeSH Terms
none
PubMed
33668153 Full text @ Cancers
Abstract
MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-β/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-β/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping