PUBLICATION

Fast widefield imaging of neuronal structure and function with optical sectioning in vivo

Authors
Li, Z., Zhang, Q., Chou, S.W., Newman, Z., Turcotte, R., Natan, R., Dai, Q., Isacoff, E.Y., Ji, N.
ID
ZDB-PUB-200606-8
Date
2020
Source
Science advances   6: eaaz3870 (Journal)
Registered Authors
Isacoff, Ehud
Keywords
none
MeSH Terms
none
PubMed
32494711 Full text @ Sci Adv
Abstract
Optical microscopy, owing to its noninvasiveness and subcellular resolution, enables in vivo visualization of neuronal structure and function in the physiological context. Optical-sectioning structured illumination microscopy (OS-SIM) is a widefield fluorescence imaging technique that uses structured illumination patterns to encode in-focus structures and optically sections 3D samples. However, its application to in vivo imaging has been limited. In this study, we optimized OS-SIM for in vivo neural imaging. We modified OS-SIM reconstruction algorithms to improve signal-to-noise ratio and correct motion-induced artifacts in live samples. Incorporating an adaptive optics (AO) module to OS-SIM, we found that correcting sample-induced optical aberrations was essential for achieving accurate structural and functional characterizations in vivo. With AO OS-SIM, we demonstrated fast, high-resolution in vivo imaging with optical sectioning for structural imaging of mouse cortical neurons and zebrafish larval motor neurons, and functional imaging of quantal synaptic transmission at Drosophila larval neuromuscular junctions.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping