PUBLICATION

The Core-Clock Gene NR1D1 Impacts Cell Motility In Vitro and Invasiveness in A Zebrafish Xenograft Colon Cancer Model

Authors
Basti, A., Fior, R., Yalҫin, M., Póvoa, V., Astaburuaga, R., Li, Y., Naderi, J., Godinho Ferreira, M., Relógio, A.
ID
ZDB-PUB-200422-16
Date
2020
Source
Cancers   12(4): (Journal)
Registered Authors
Fior, Rita
Keywords
apoptosis, circadian clock, colon cancer, micrometastasis, proliferation, zebrafish xenograft
MeSH Terms
none
PubMed
32244760 Full text @ Cancers
Abstract
Malfunctions of circadian clock trigger abnormal cellular processes and influence tumorigenesis. Using an in vitro and in vivo xenograft model, we show that circadian clock disruption via the downregulation of the core-clock genes BMAL1, PER2, and NR1D1 impacts the circadian phenotype of MYC, WEE1, and TP53, and affects proliferation, apoptosis, and cell migration. In particular, both our in vitro and in vivo results suggest an impairment of cell motility and a reduction in micrometastasis formation upon knockdown of NR1D1, accompanied by altered expression levels of SNAI1 and CD44. Interestingly we show that differential proliferation and reduced tumour growth in vivo may be due to the additional influence of the host-clock and/or to the 3D tumour architecture. Our results raise new questions concerning host-tumour interaction and show that core-clock genes are involved in key cancer properties, including the regulation of cell migration and invasion by NR1D1 in zebrafish xenografts.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping