PUBLICATION
            Application of the Zebrafish Traumatic Brain Injury Model in Assessing Cerebral Inflammation
- Authors
- Gan, D., Wu, S., Chen, B., Zhang, J.
- ID
- ZDB-PUB-191212-38
- Date
- 2019
- Source
- Zebrafish 17(2): 73-82 (Journal)
- Registered Authors
- Zhang, Jingjing
- Keywords
- Cytidine 5′-Diphosphocholine, inflammation, microglia, traumatic brain injury, zebrafish
- MeSH Terms
- 
    
        
        
            
                - Zebrafish*
- Animals
- Microglia/metabolism*
- Animals, Genetically Modified
- Disease Models, Animal*
- Inflammation/pathology
- Inflammation/physiopathology*
- Cerebrum/pathology
- Cerebrum/physiopathology*
- Brain Injuries, Traumatic/pathology
- Brain Injuries, Traumatic/physiopathology*
 
- PubMed
- 31825288 Full text @ Zebrafish
            Citation
        
        
            Gan, D., Wu, S., Chen, B., Zhang, J. (2019) Application of the Zebrafish Traumatic Brain Injury Model in Assessing Cerebral Inflammation. Zebrafish. 17(2):73-82.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Traumatic brain injury (TBI) is a major public and socioeconomic problem throughout the world. The establishment of an effective and cost-effective TBI model for developing new therapeutic agents is challenging. Microglia are considered the resident macrophages of the central nervous system (CNS) that normally do not enter the brain. As the primary mediators of the innate immune response in the CNS, microglia play a critical role in neuroinflammation and secondary injury after TBI. In this study, we established an in vivo TBI zebrafish model using Tg(coro1a:EGFP) line where the green fluorescent protein-labeled microglia were present. We demonstrated that microglia accumulated rapidly in response to neuronal injuries. To clear away injured neurons and restore the CNS homeostasis, activated microglia secreted two types of functional cytokines, including pro-inflammatory interleukins (IL) of IL-1β and IL-6 and anti-inflammatory factors of IL-4 and IL-10 in the lesioned larvae. Cytidine 5'-Diphosphocholine (CDP-choline), as an effective and clinical neuroprotective drug, could further activate microglia, expressing high levels of il-1β, il-6, il-4, and il-10 in the TBI model. Moreover, CDP-choline reduced neuronal apoptosis and promoted neuronal proliferation around the lesioned site. Based on these results, the TBI model established in this study represents a suitable model for developing new therapeutic agents for CNS-associated diseases.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    