PUBLICATION

Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos

Authors
Hung, G.Y., Wu, C.L., Chou, Y.L., Chien, C.T., Horng, J.L., Lin, L.Y.
ID
ZDB-PUB-190221-5
Date
2019
Source
Aquatic toxicology (Amsterdam, Netherlands)   209: 168-177 (Journal)
Registered Authors
Horng, Jiun-Lin
Keywords
Cisplatin, Hair cell, Ionocyte, Platinum-based, Zebrafish
MeSH Terms
  • Animals
  • Calcium/metabolism
  • Chlorides/metabolism
  • Cisplatin/toxicity*
  • Embryo, Nonmammalian/drug effects
  • Embryo, Nonmammalian/pathology*
  • Environmental Exposure*
  • Hair/pathology*
  • Ion-Selective Electrodes
  • Ions
  • Skin/pathology*
  • Sodium/metabolism
  • Survival Analysis
  • Zebrafish/anatomy & histology
  • Zebrafish/embryology*
  • Zebrafish Proteins/metabolism
PubMed
30784778 Full text @ Aquat. Toxicol.
Abstract
This study aimed to assess the sublethal effects of a platinum-based compound, cisplatin, using a zebrafish model. Zebrafish embryos were incubated in different concentrations of cisplatin at 0-96 h post-fertilization. Using a non-invasive, scanning ion-selective electrode technique (SIET), we measured the functions of hair cells (Ca2+ influx) and ionocytes ([H+] gradients). The survival rate, hatching rate, phenotype, body length, whole-body ion (Na+, Cl-, and Ca2+) and Pt contents were also determined. The effects of cisplatin on zebrafish embryos were demonstrated as first impairing hair cell function (at 1 μM of cisplatin), the hair cell number, and body ion content of Cl- (at 10 μM of cisplatin), then decreasing ionocyte acid secretion and overall body ion contents of Na+ and Ca2+ (at 50 μM of cisplatin). The body length and ionocyte density decreased at 100 μM of cisplatin, and survival decreased at 500 μM of cisplatin. As the cisplatin concentration increased, the accumulation of Pt in fish embryos also increased. These results revealed that hair cells are significantly more susceptible to cisplatin toxicity than ionocytes. By determining the lowest observed effective concentration of cisplatin that caused in vivo functional alterations of zebrafish hair cells and skin ionocytes, this model demonstrated 500-fold greater sensitivity than by detecting changes in survival, for early assessment of the effects of platinum-based chemotherapeutic drugs on fish.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping