ZFIN ID: ZDB-PUB-180816-14
Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish
Nagpal, J., Herget, U., Choi, M.K., Ryu, S.
Date: 2018
Source: Cell and tissue research   375(1): 5-22 (Review)
Registered Authors: Herget, Ulrich, Nagpal, Jatin, Ryu, Soojin
Keywords: Hypothalamus, Paraventricular nucleus, Stress, Zebrafish
MeSH Terms:
  • Animals
  • Hypothalamus/anatomy & histology*
  • Hypothalamus/growth & development*
  • Neuronal Plasticity/physiology*
  • Neurosecretory Systems/anatomy & histology*
  • Neurosecretory Systems/growth & development*
  • Preoptic Area/anatomy & histology
  • Preoptic Area/growth & development
  • Stress, Physiological
  • Zebrafish/anatomy & histology*
  • Zebrafish/growth & development*
PubMed: 30109407 Full text @ Cell Tissue Res.
ABSTRACT
The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.
ADDITIONAL INFORMATION No data available