PUBLICATION
            BMP- and Neuropilin-1-mediated motor axon navigation relies on spastin alternative translation
- Authors
- Jardin, N., Giudicelli, F., Ten Martín, D., Vitrac, A., De Gois, S., Allison, R., Houart, C., Reid, E., Hazan, J., Fassier, C.
- ID
- ZDB-PUB-180808-5
- Date
- 2018
- Source
- Development (Cambridge, England) 145(17): (Journal)
- Registered Authors
- Hazan, Jamile, Houart, Corinne
- Keywords
- Axon navigation, BMP signalling, Hereditary spastic paraplegia, Neuropilin-1, Spastin, Zebrafish
- MeSH Terms
- 
    
        
        
            
                - Zebrafish Proteins/biosynthesis
- Zebrafish Proteins/genetics*
- GTP-Binding Proteins/metabolism
- Humans
- Animals
- Gene Knockout Techniques
- Spastin/biosynthesis
- Spastin/genetics*
- Axons/metabolism
- Motor Neurons/cytology*
- Protein Isoforms/genetics
- Membrane Proteins/metabolism
- Zebrafish/embryology*
- Neuropilin-1/metabolism*
- CRISPR-Cas Systems/genetics
- Cell Movement/genetics
- Chlorocebus aethiops
- COS Cells
- Spastic Paraplegia, Hereditary/genetics
- Cell Line
- Bone Morphogenetic Proteins/metabolism*
 
- PubMed
- 30082270 Full text @ Development
            Citation
        
        
            Jardin, N., Giudicelli, F., Ten Martín, D., Vitrac, A., De Gois, S., Allison, R., Houart, C., Reid, E., Hazan, J., Fassier, C. (2018) BMP- and Neuropilin-1-mediated motor axon navigation relies on spastin alternative translation. Development (Cambridge, England). 145(17):.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Functional analyses of genes responsible for neurodegenerative disorders have unveiled crucial links between neurodegenerative processes and key developmental signalling pathways. Mutations in SPG4-encoding spastin cause hereditary spastic paraplegia (HSP). Spastin is involved in diverse cellular processes that couple microtubule severing to membrane remodelling. Two main spastin isoforms are synthesised from alternative translational start sites (M1 and M87). However, their specific roles in neuronal development and homeostasis remain largely unknown. To selectively unravel their neuronal function, we blocked spastin synthesis from each initiation codon during zebrafish development and performed rescue analyses. The knockdown of each isoform led to different motor neuron and locomotion defects, which were not rescued by the selective expression of the other isoform. Notably, both morphant neuronal phenotypes were observed in a CRISPR/Cas9 spastin mutant. We next showed that M1 spastin, together with HSP proteins atlastin 1 and NIPA1, drives motor axon targeting by repressing BMP signalling, whereas M87 spastin acts downstream of neuropilin 1 to control motor neuron migration. Our data therefore suggest that defective BMP and neuropilin 1 signalling may contribute to the motor phenotype in a vertebrate model of spastin depletion.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    