PUBLICATION
            Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes
- Authors
 - Zimmermann, M.J.Y., Nevala, N.E., Yoshimatsu, T., Osorio, D., Nilsson, D.E., Berens, P., Baden, T.
 - ID
 - ZDB-PUB-180626-1
 - Date
 - 2018
 - Source
 - Current biology : CB 28(13): 2018-2032.e5 (Journal)
 - Registered Authors
 - Keywords
 - 2-photon in vivo imaging, UV vision, bipolar cell, color, natural imaging, retina, vision, visual ecology, zebrafish
 - MeSH Terms
 - 
    
        
        
            
                
- Animals
 - Zebrafish/physiology*
 - Female
 - Retina/physiology
 - Color Perception/physiology*
 - Contrast Sensitivity
 - Color Vision/physiology*
 - Male
 
 - PubMed
 - 29937350 Full text @ Curr. Biol.
 
            Citation
        
        
            Zimmermann, M.J.Y., Nevala, N.E., Yoshimatsu, T., Osorio, D., Nilsson, D.E., Berens, P., Baden, T. (2018) Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes. Current biology : CB. 28(13):2018-2032.e5.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Animal eyes have evolved to process behaviorally important visual information, but how retinas deal with statistical asymmetries in visual space remains poorly understood. Using hyperspectral imaging in the field, in vivo 2-photon imaging of retinal neurons, and anatomy, here we show that larval zebrafish use a highly anisotropic retina to asymmetrically survey their natural visual world. First, different neurons dominate different parts of the eye and are linked to a systematic shift in inner retinal function: above the animal, there is little color in nature, and retinal circuits are largely achromatic. Conversely, the lower visual field and horizon are color rich and are predominately surveyed by chromatic and color-opponent circuits that are spectrally matched to the dominant chromatic axes in nature. Second, in the horizontal and lower visual field, bipolar cell terminals encoding achromatic and color-opponent visual features are systematically arranged into distinct layers of the inner retina. Third, above the frontal horizon, a high-gain UV system piggybacks onto retinal circuits, likely to support prey capture.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping