PUBLICATION

Fuzzy-based propagation of prior knowledge to improve large-scale image analysis pipelines

Authors
Stegmaier, J., Mikut, R.
ID
ZDB-PUB-171103-3
Date
2017
Source
PLoS One   12: e0187535 (Journal)
Registered Authors
Mikut, Ralf
Keywords
none
MeSH Terms
  • Animals
  • Fuzzy Logic*
  • Image Processing, Computer-Assisted/methods*
  • Uncertainty
  • Zebrafish/embryology
PubMed
29095927 Full text @ PLoS One
Abstract
Many automatically analyzable scientific questions are well-posed and a variety of information about expected outcomes is available a priori. Although often neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and by direct information about the ambiguity inherent in the extracted data. We present a new concept that increases the result quality awareness of image analysis operators by estimating and distributing the degree of uncertainty involved in their output based on prior knowledge. This allows the use of simple processing operators that are suitable for analyzing large-scale spatiotemporal (3D+t) microscopy images without compromising result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it to enhance the result quality of various processing operators. These concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. The functionality of the proposed approach is further validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. The generality of the concept makes it applicable to practically any field with processing strategies that are arranged as linear pipelines. The automated analysis of terabyte-scale microscopy data will especially benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout.
Errata / Notes
This article is corrected by ZDB-PUB-220906-101 .
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping