PUBLICATION

Zebrafish Xenograft: An Evolutionary Experiment in Tumour Biology

Authors
Wyatt, R.A., Trieu, N.P.V., Crawford, B.D.
ID
ZDB-PUB-170906-5
Date
2017
Source
Genes   8(9): 220 (Review)
Registered Authors
Crawford, Bryan D.
Keywords
MMPs, extracellular matrix, matrix metalloproteinases, xenograft, zebrafish
MeSH Terms
none
PubMed
28872594 Full text @ Genes (Basel)
Abstract
Though the cancer research community has used mouse xenografts for decades more than zebrafish xenografts, zebrafish have much to offer: they are cheap, easy to work with, and the embryonic model is relatively easy to use in high-throughput assays. Zebrafish can be imaged live, allowing us to observe cellular and molecular processes in vivo in real time. Opponents dismiss the zebrafish model due to the evolutionary distance between zebrafish and humans, as compared to mice, but proponents argue for the zebrafish xenograft's superiority to cell culture systems and its advantages in imaging. This review places the zebrafish xenograft in the context of current views on cancer and gives an overview of how several aspects of this evolutionary disease can be addressed in the zebrafish model. Zebrafish are missing homologs of some human proteins and (of particular interest) several members of the matrix metalloproteinase (MMP) family of proteases, which are known for their importance in tumour biology. This review draws attention to the implicit evolutionary experiment taking place when the molecular ecology of the xenograft host is significantly different than that of the donor.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping