PUBLICATION
            Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish
- Authors
- Horstick, E.J., Bayleyen, Y., Sinclair, J.L., Burgess, H.A.
- ID
- ZDB-PUB-170127-9
- Date
- 2017
- Source
- BMC Biology 15: 4 (Journal)
- Registered Authors
- Burgess, Harold, Horstick, Eric
- Keywords
- CRISPR, Goal-directed behavior, Melanopsin, Motivation, Non-visual photoreceptor, Orthopedia, Search, Somatostatin, Zebrafish, opn4a, sst1.1
- MeSH Terms
- 
    
        
        
            
                - Lighting
- Locomotion*
- Signal Transduction*
- Swimming
- Zebrafish/metabolism*
- Rod Opsins/metabolism
- Retinaldehyde/metabolism
- Photoreceptor Cells, Vertebrate/metabolism*
- Animals
- Neurons/metabolism
- Somatostatin/metabolism*
- Imaging, Three-Dimensional
- Behavior, Animal*
- Brain/metabolism*
- Models, Biological
 
- PubMed
- 28122559 Full text @ BMC Biol.
            Citation
        
        
            Horstick, E.J., Bayleyen, Y., Sinclair, J.L., Burgess, H.A. (2017) Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish. BMC Biology. 15:4.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
Background Animals use sensory cues to efficiently locate resources, but when sensory information is insufficient, they may rely on internally coded search strategies. Despite the importance of search behavior, there is limited understanding of the underlying neural mechanisms in vertebrates.
Results Here, we report that loss of illumination initiates sophisticated light-search behavior in larval zebrafish. Using three-dimensional tracking, we show that at the onset of darkness larvae swim in a helical trajectory that is spatially restricted in the horizontal plane, before gradually transitioning to an outward movement profile. Local and outward swim patterns display characteristic features of area-restricted and roaming search strategies, differentially enhancing phototaxis to nearby and remote sources of light. Retinal signaling is only required to initiate area-restricted search, implying that photoreceptors within the brain drive the transition to the roaming search state. Supporting this, orthopediaA mutant larvae manifest impaired transition to roaming search, a phenotype which is recapitulated by loss of the non-visual opsin opn4a and somatostatin signaling.
Conclusion These findings define distinct neuronal pathways for area-restricted and roaming search behaviors and clarify how internal drives promote goal-directed activity.
            
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    