PUBLICATION

FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy.

Authors
Begay, R.L., Tharp, C.A., Martin, A., Graw, S.L., Sinagra, G., Miani, D., Sweet, M.E., Slavov, D.B., Stafford, N., Zeller, M.J., Alnefaie, R., Rowland, T.J., Brun, F., Jones, K.L., Gowan, K., Mestroni, L., Garrity, D.M., Taylor, M.R.
ID
ZDB-PUB-161224-6
Date
2016
Source
JACC. Basic to translational science   1: 344-359 (Journal)
Registered Authors
Garrity, Deborah
Keywords
cardiovascular genetics, dilated cardiomyopathy, filamin C, heart failure, zebrafish
MeSH Terms
none
PubMed
28008423 Full text @ JACC Basic Transl Sci
Abstract
To identify novel dilated cardiomyopathy (DCM) causing genes, and to elucidate the pathological mechanism leading to DCM by utilizing zebrafish as a model organism.
DCM, a major cause of heart failure, is frequently familial and caused by a genetic defect. However, only 50% of DCM cases can be attributed to a known DCM gene variant, motivating the ongoing search for novel disease genes.
We performed whole exome sequencing (WES) in two multigenerational Italian families and one US family with arrhythmogenic DCM without skeletal muscle defects, in whom prior genetic testing had been unrevealing. Pathogenic variants were sought by a combination of bioinformatic filtering and cosegregation testing among affected individuals within the families. We performed function assays and generated a zebrafish morpholino knockdown model.
A novel filamin C gene splicing variant (FLNC c.7251+1 G>A) was identified by WES in all affected family members in the two Italian families. A separate novel splicing mutation (FLNC c.5669-1delG) was identified in the US family. Western blot analysis of cardiac heart tissue from an affected individual showed decreased FLNC protein, supporting a haploinsufficiency model of pathogenesis. To further analyze this model, a morpholino knockdown of the ortholog filamin Cb in zebrafish was created which resulted in abnormal cardiac function and ultrastructure.
Using WES, we identified two novel FLNC splicing variants as the likely cause of DCM in three families. We provided protein expression and in vivo zebrafish data supporting haploinsufficiency as the pathogenic mechanism leading to DCM.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutation and Transgenics
Human Disease / Model Data
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping
Errata and Notes