PUBLICATION

Docosahexaenoic Acid Modulates Invasion and Metastasis of Human Ovarian Cancer via Multiple Molecular Pathways

Authors
Wang, Y.C., Wu, Y.N., Wang, S.L., Lin, Q.H., He, M.F., Liu, Q.L., Wang, J.H.
ID
ZDB-PUB-160604-3
Date
2016
Source
International journal of gynecological cancer : official journal of the International Gynecological Cancer Society   26(6): 994-1003 (Journal)
Registered Authors
Keywords
none
MeSH Terms
  • Animals
  • Animals, Genetically Modified
  • Cell Line, Tumor
  • Cell Survival/drug effects
  • Docosahexaenoic Acids/pharmacology*
  • Down-Regulation/drug effects
  • Female
  • Humans
  • Male
  • Neoplasm Invasiveness
  • Neoplasm Metastasis
  • Ovarian Neoplasms/drug therapy*
  • Ovarian Neoplasms/genetics
  • Ovarian Neoplasms/metabolism
  • Ovarian Neoplasms/pathology
  • RNA, Messenger/biosynthesis
  • RNA, Messenger/genetics
  • Xenograft Model Antitumor Assays
  • Zebrafish
PubMed
27258728 Full text @ Int. J. Gynecol. Cancer
Abstract
We investigated the effect of docosahexaenoic acid (DHA) on the invasion and metastasis of ovarian cancer cells (A2780, HO8910, and SKOV-3).
Cytotoxicity assay was performed to determine the optimal doses of DHA in this experiment. The effects of DHA on invasion ability were assessed by invasion assay. The expressions of messenger RNA and/or proteins associated with invasion or metastasis were detected by quantitative Real Time-Polymerase Chain Reaction or Western blot. The effect of DHA on cell metastasis was assessed in xenograft model of zebrafish.
Docosahexaenoic acid and α-linolenic acid could reduce the cell vitalities in dose-dependent manner. However, DHA inhibited the invasion and metastasis of ovarian cancer cells, but α-linolenic acid did not (**P < 0.01). Docosahexaenoic acid could downregulate the expressions of WAVE3, vascular endothelial cell growth factor, and MMP-9, and upregulate KISS-1, TIMP-1, and PPAR-γ, which negatively correlated with cell invasion and metastasis (*P < 0.05). Docosahexaenoic acid restrained the development of subintestinal vessels and cancer cell metastasis in xenograft model of zebrafish (**P < 0.01).
Docosahexaenoic acid inhibited the invasion and metastasis of ovarian cancer cells in vitro and in vivo through the modulation of NF-κB signaling pathway, suggesting that DHA is a promising candidate for ovarian cancer therapy.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping