PUBLICATION

Zebrafish model of photochemical thrombosis for translational research and thrombolytic screening in vivo

Authors
Lee, I.J., Yang, Y.C., Hsu, J.W., Chang, W.T., Chuang, Y.J., Liau, I.
ID
ZDB-PUB-160514-7
Date
2017
Source
Journal of biophotonics   10(4): 494-502 (Journal)
Registered Authors
Chuang, Yung-Jen
Keywords
drug screen, photochemistry, thrombolysis, thrombosis, zebrafish
MeSH Terms
  • Animals
  • Aorta/drug effects
  • Disease Models, Animal*
  • Dose-Response Relationship, Drug
  • Equipment Design
  • Fibrinolytic Agents/pharmacology
  • Heart Rate/drug effects
  • Larva
  • Lasers*
  • Photosensitizing Agents*
  • Rose Bengal/toxicity
  • Thrombolytic Therapy
  • Thrombosis*/drug therapy
  • Tissue Plasminogen Activator/pharmacology
  • Zebrafish*
PubMed
27174426 Full text @ J. Biophotonics
Abstract
Acute thromboembolic diseases remain the major global cause of death or disability. Although an array of thrombolytic and antithrombotic drugs has been approved to treat or prevent thromboembolic diseases, many more drugs that target specific clotting mechanisms are under development. Here a novel zebrafish model of photochemical thrombosis is reported and its prospective application for the screening and preclinical testing of thrombolytic agents in vivo is demonstrated. Through photochemical excitation, a thrombus was induced to form at a selected section of the dorsal aorta of larval zebrafish, which had been injected with photosensitizers. Such photochemical thrombosis can be consistently controlled to occlude partially or completely the targeted blood vessel. Detailed mechanistic tests indicate that the zebrafish model of photochemical thrombosis exhibits essential features of classical coagulation and a thrombolytic pathway. For demonstration, tissue plasminogen activator (tPA), a clinically feasible thrombolytic agent, was shown to effectively dissolve photochemically induced blood clots. In light of the numerous unique advantages of zebrafish as a model organism, our approach is expected to benefit not only the development of novel thrombolytic and antithrombotic strategies but also the fundamental or translational research targeting hereditary thrombotic or coagulation disorders.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping