PUBLICATION

Zebrafish Needle EMG: a New Tool for High-throughput Drug Screens

Authors
Cho, S.J., Nam, T.S., Byun, D., Choi, S.Y., Kim, M.K., Kim, S.
ID
ZDB-PUB-150717-5
Date
2015
Source
Journal of neurophysiology   114(3): 2065-70 (Journal)
Registered Authors
Choi, Seok-Yong
Keywords
electrode, microneedle, motor unit action potential (MUAP), needle electromyography (EMG), zebrafish
MeSH Terms
  • Action Potentials
  • Animals
  • Drug Discovery/methods
  • Electrodes
  • Electromyography/instrumentation
  • Electromyography/methods*
  • High-Throughput Screening Assays/instrumentation
  • High-Throughput Screening Assays/methods*
  • Muscle, Skeletal/physiology
  • Zebrafish
PubMed
26180124 Full text @ J. Neurophysiol.
Abstract
Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. Using the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days post fertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of approximately 10 ms, while the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping