PUBLICATION

Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research

Authors
Nguyen, M., Poudel, M.K., Stewart, A.M., and Kalueff, A.V.
ID
ZDB-PUB-130909-1
Date
2013
Source
Brain research bulletin   98: 145-54 (Review)
Registered Authors
Kalueff, Allan V.
Keywords
melanophore, skin, coloration, zebraifhs, in vivo screens, neuropharmacology
MeSH Terms
  • Animals
  • Central Nervous System Agents/pharmacology*
  • Drug Discovery*
  • Models, Animal*
  • Skin Pigmentation/drug effects*
  • Skin Pigmentation/genetics
  • Zebrafish/anatomy & histology*
  • Zebrafish/genetics
PubMed
24007957 Full text @ Brain Res. Bull.
Abstract

Skin coloration can be affected by many genetic, environmental and pharmacological factors. Zebrafish (Danio rerio) are a useful and versatile model organism in biomedical research due to their genetic tractability, physiological homology to mammals, low cost, reproducibility and high throughput. Zebrafish coloration is mediated by chromatophores – the skin color pigment cells largely controlled by endocrine and neural mechanisms. The characteristic darkening of zebrafish skin is caused by the dispersion (and paling – by aggregation) of melanophores, which show high homology to mammalian structures. Various pharmacological agents potently affect zebrafish coloration – the phenotype that often accompanies behavioral effects of the drugs, and may be used for drug discovery. Although zebrafish behavior and skin responses are usually not directly related, they share common regulatory (neural, endocrine) mechanisms, and therefore may be assessed in parallel during psychotropic drug screening. For example, some psychoactive drugs can potently affect zebrafish skin coloration. Can we use this knowledge to refine phenotype-driven drug psychotropic discovery? Here, we present current models using zebrafish skin coloration assays, and discuss how these models may be applied to enhance in vivo CNS drug discovery.

Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping