PUBLICATION

Circuit neuroscience in zebrafish

Authors
Friedrich, R.W., Jacobson, G.A., and Zhu, P.
ID
ZDB-PUB-120111-2
Date
2010
Source
Current biology : CB   20(8): R371-R381 (Review)
Registered Authors
Friedrich, Rainer
Keywords
none
MeSH Terms
  • Animals
  • Behavior, Animal/physiology
  • Brain/anatomy & histology*
  • Brain/physiology*
  • Gene Expression
  • Models, Animal*
  • Nerve Net/anatomy & histology*
  • Nerve Net/physiology*
  • Neurosciences/methods
  • Olfactory Pathways/anatomy & histology
  • Olfactory Pathways/physiology
  • Visual Pathways/anatomy & histology
  • Visual Pathways/physiology
  • Zebrafish/anatomy & histology*
  • Zebrafish/genetics
  • Zebrafish/physiology*
PubMed
21749961 Full text @ Curr. Biol.
Abstract
A central goal of modern neuroscience is to obtain a mechanistic understanding of higher brain functions under healthy and diseased conditions. Addressing this challenge requires rigorous experimental and theoretical analysis of neuronal circuits. Recent advances in optogenetics, high-resolution in vivo imaging, and reconstructions of synaptic wiring diagrams have created new opportunities to achieve this goal. To fully harness these methods, model organisms should allow for a combination of genetic and neurophysiological approaches in vivo. Moreover, the brain should be small in terms of neuron numbers and physical size. A promising vertebrate organism is the zebrafish because it is small, it is transparent at larval stages and it offers a wide range of genetic tools and advantages for neurophysiological approaches. Recent studies have highlighted the potential of zebrafish for exhaustive measurements of neuronal activity patterns, for manipulations of defined cell types in vivo and for studies of causal relationships between circuit function and behavior. In this article, we summarize background information on the zebrafish as a model in modern systems neuroscience and discuss recent results.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutation and Transgenics
Human Disease / Model Data
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping
Errata and Notes