PUBLICATION
            Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system
- Authors
- Muto, A., and Kawakami, K.
- ID
- ZDB-PUB-111117-7
- Date
- 2011
- Source
- Communicative & integrative biology 4(5): 566-568 (Journal)
- Registered Authors
- Kawakami, Koichi, Muto, Akira
- Keywords
- zebrafish, motor neuron, calcium imaging, GCaMP, Gal4FF-UAS
- MeSH Terms
- none
- PubMed
- 22046464 Full text @ Commun. Integr. Biol.
            Citation
        
        
            Muto, A., and Kawakami, K. (2011) Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system. Communicative & integrative biology. 4(5):566-568.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Measurement of the activity of neuronal ensembles is an essential step to understand how the neuronal network is organized and functioning. Electrical excitation of neurons causes calcium influx via voltage-gated calcium ion channels, which can be monitored by calcium imaging using fluorescent calcium probes. DNA-encoded calcium indicators (DECIs) such as cameleon and GCaMP have been developed to specifically label a subpopulation of neurons. However, in many cases, DECIs that had been developed and tested in vitro did not always show expected performance in vivo. It is necessary to increase its sensitivity and also to adjust its dynamic range to the physiological conditions. In our recent study, we developed an improved version of GCaMP and tested its performance in vivo using transgenic zebrafish. By combining the new GCaMP with targeted gene expression via the Gal4FF-UAS system, we successfully imaged the activity of the spinal motor circuit during spontaneous contractions of zebrafish larvae. Further we report here that heptanol, a gap junction blocker, could alter the spatiotemporal activation pattern of the motor circuit. Thus, we demonstrate that calcium imaging with GCaMP is powerful to analyze neuronal activities under normal and pharmacologically perturbed conditions.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    