PUBLICATION
            Zinc transporter expression in zebrafish (Danio rerio) during development
- Authors
- Ho, E., Dukovcic, S., Hobson, B., Wong, C.P., Miller, G., Hardin, K., Traber, M.G., and Tanguay, R.L.
- ID
- ZDB-PUB-110602-24
- Date
- 2012
- Source
- Comparative biochemistry and physiology. Toxicology & pharmacology : CBP 155(1): 26-32 (Journal)
- Registered Authors
- Tanguay, Robyn L.
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism*
- Animals
- Time Factors
- Cloning, Molecular
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Embryonic Development*
- Zinc/metabolism*
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism*
- Gene Expression Regulation, Developmental*
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism*
- Real-Time Polymerase Chain Reaction
 
- PubMed
- 21596156 Full text @ Comp. Biochem. Physiol. C Toxicol. Pharmacol.
            Citation
        
        
            Ho, E., Dukovcic, S., Hobson, B., Wong, C.P., Miller, G., Hardin, K., Traber, M.G., and Tanguay, R.L. (2012) Zinc transporter expression in zebrafish (Danio rerio) during development. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 155(1):26-32.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Zinc is a micronutrient important in several biological processes including growth and development. We have limited knowledge on the impact of maternal zinc deficiency on zinc and zinc regulatory mechanisms in the developing embryo due to a lack of in vivo experimental models that allow us to directly study the effects of maternal zinc on embryonic development following implantation. To overcome this barrier, we have proposed to use zebrafish as a model organism to study the impact of zinc during development. The goal of the current study was to profile the mRNA expression of all the known zinc transporter genes in the zebrafish across embryonic and larval development and to quantify the embryonic zinc concentrations at these corresponding developmental time points. The SLC30A zinc transporter family (ZnT) and SLC39A family, Zir-,Irt-like protein (ZIP) zinc transporter proteins were profiled in zebrafish embryos at 0, 2, 6, 12, 24, 48 and 120h post fertilization to capture expression patterns from a single cell through full development. We observed consistent embryonic zinc levels, but differential expression of several zinc transporters across development. These results suggest that zebrafish is an effective model organism to study the effects of zinc deficiency and further investigation is underway to identify possible molecular pathways that are dysregulated with maternal zinc deficiency.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    