ZFIN ID: ZDB-PUB-110110-37
Characterization of new otic enhancers of the pou3f4 gene reveal distinct signaling pathway regulation and spatio-temporal patterns
Robert-Moreno, A., Naranjo, S., de la Calle-Mustienes, E., Gomez-Skarmeta, J.L., and Alsina, B.
Date: 2010
Source: PLoS One   5(12): e15907 (Journal)
Registered Authors: Alsina, Berta, de la Calle-Mustienes, Elisa, Gómez-Skarmeta, José Luis, Naranjo, Silvia
Keywords: none
MeSH Terms:
  • Animals
  • Binding Sites
  • Ear/embryology
  • Enhancer Elements, Genetic
  • Gene Deletion
  • Green Fluorescent Proteins/metabolism
  • Humans
  • Mice
  • Models, Genetic
  • Mutation
  • POU Domain Factors/genetics*
  • Time Factors
  • Transcription Factors/metabolism
  • Xenopus
  • Zebrafish
PubMed: 21209840 Full text @ PLoS One
POU3F4 is a member of the POU-homedomain transcription factor family with a prominent role in inner ear development. Mutations in the human POU3F4 coding unit leads to X-linked deafness type 3 (DFN3), characterized by conductive hearing loss and progressive sensorineural deafness. Microdeletions found 1 Mb 5' upstream of the coding region also displayed the same phenotype, suggesting that cis-regulatory elements might be present in that region. Indeed, we and others have recently identified several enhancers at the 1 Mb 5' upstream interval of the pou3f4 locus. Here we characterize the spatio-temporal patterns of these regulatory elements in zebrafish transgenic lines. We show that the most distal enhancer (HCNR 81675) is activated earlier and drives GFP reporter expression initially to a broad ear domain to progressively restrict to the sensory patches. The proximal enhancer (HCNR 82478) is switched later during development and promotes expression, among in other tissues, in sensory patches from its onset. The third enhancer (HCNR 81728) is also active at later stages in the otic mesenchyme and in the otic epithelium. We also characterize the signaling pathways regulating these enhancers. While HCNR 81675 is regulated by very early signals of retinoic acid, HCNR 82478 is regulated by Fgf activity at a later stage and the HCNR 81728 enhancer is under the control of Hh signaling. Finally, we show that Sox2 and Pax2 transcription factors are bound to HCNR 81675 genomic region during otic development and specific mutations to these transcription factor binding sites abrogates HCNR 81675 enhancer activity. Altogether, our results suggest that pou3f4 expression in inner ear might be under the control of distinct regulatory elements that fine-tune the spatio-temporal activity of this gene and provides novel data on the signaling mechanisms controlling pou3f4 function.