PUBLICATION

Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities

Authors
Castleman, V.H., Romio, L., Chodhari, R., Hirst, R.A., de Castro, S.C., Parker, K.A., Ybot-Gonzalez, P., Emes, R.D., Wilson, S.W., Wallis, C., Johnson, C.A., Herrera, R.J., Rutman, A., Dixon, M., Shoemark, A., Bush, A., Hogg, C., Gardiner, R.M., Reish, O., Greene, N.D., O'Callaghan, C., Purton, S., Chung, E.M., and Mitchison, H.M.
ID
ZDB-PUB-090217-15
Date
2009
Source
American journal of human genetics   84(2): 197-209 (Journal)
Registered Authors
Wilson, Steve
Keywords
none
MeSH Terms
  • Animals
  • Chlamydomonas/genetics
  • Chromosome Aberrations
  • Chromosome Mapping
  • Chromosomes, Human/genetics
  • Chromosomes, Human, Pair 1
  • Cilia/genetics
  • Cilia/pathology*
  • Congenital Abnormalities/genetics*
  • Cytoskeletal Proteins/genetics*
  • DNA-Binding Proteins/genetics*
  • Female
  • Humans
  • In Situ Hybridization
  • Kartagener Syndrome/genetics*
  • Male
  • Mutation*
  • Pedigree
  • Polymorphism, Single Nucleotide
  • Zebrafish/genetics
PubMed
19200523 Full text @ Am. J. Hum. Genet.
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous inherited disorder arising from dysmotility of motile cilia and sperm. This is associated with a variety of ultrastructural defects of the cilia and sperm axoneme that affect movement, leading to clinical consequences on respiratory-tract mucociliary clearance and lung function, fertility, and left-right body-axis determination. We performed whole-genome SNP-based linkage analysis in seven consanguineous families with PCD and central-microtubular-pair abnormalities. This identified two loci, in two families with intermittent absence of the central-pair structure (chromosome 6p21.1, Zmax 6.7) and in five families with complete absence of the central pair (chromosome 6q22.1, Zmax 7.0). Mutations were subsequently identified in two positional candidate genes, RSPH9 on chromosome 6p21.1 and RSPH4A on chromosome 6q22.1. Haplotype analysis identified a common ancestral founder effect RSPH4A mutation present in UK-Pakistani pedigrees. Both RSPH9 and RSPH4A encode protein components of the axonemal radial spoke head. In situ hybridization of murine Rsph9 shows gene expression restricted to regions containing motile cilia. Investigation of the effect of knockdown or mutations of RSPH9 orthologs in zebrafish and Chlamydomonas indicate that radial spoke head proteins are important in maintaining normal movement in motile, "9+2"-structure cilia and flagella. This effect is rescued by reintroduction of gene expression for restoration of a normal beat pattern in zebrafish. Disturbance in function of these genes was not associated with defects in left-right axis determination in humans or zebrafish.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping