PUBLICATION
Control of visually guided behavior by distinct populations of spinal projection neurons
- Authors
- Orger, M.B., Kampff, A.R., Severi, K.E., Bollmann, J.H., and Engert, F.
- ID
- ZDB-PUB-080227-17
- Date
- 2008
- Source
- Nature Neuroscience 11(3): 327-333 (Journal)
- Registered Authors
- Bollmann, Johann, Engert, Florian, Orger, Mike, Severi, Kristen
- Keywords
- none
- MeSH Terms
-
- Zebrafish/anatomy & histology
- Zebrafish/physiology*
- Action Potentials/physiology
- Denervation
- Reticular Formation/anatomy & histology
- Reticular Formation/physiology*
- Nerve Net/cytology
- Nerve Net/physiology
- Fluorescent Dyes
- Axons/physiology
- Axons/ultrastructure
- Swimming/physiology
- Orientation/physiology
- Models, Animal
- Staining and Labeling
- Spinal Cord/anatomy & histology
- Spinal Cord/physiology*
- Brain Stem/anatomy & histology
- Brain Stem/physiology*
- Neurons/cytology
- Neurons/physiology*
- Visual Pathways/physiology
- Efferent Pathways/anatomy & histology
- Efferent Pathways/physiology
- Calcium/chemistry
- Animals
- Functional Laterality/physiology
- Locomotion/physiology
- Indicators and Reagents
- Psychomotor Performance/physiology*
- PubMed
- 18264094 Full text @ Nat. Neurosci.
Citation
Orger, M.B., Kampff, A.R., Severi, K.E., Bollmann, J.H., and Engert, F. (2008) Control of visually guided behavior by distinct populations of spinal projection neurons. Nature Neuroscience. 11(3):327-333.
Abstract
A basic question in the field of motor control is how different actions are represented by activity in spinal projection neurons. We used a new behavioral assay to identify visual stimuli that specifically drive basic motor patterns in zebrafish. These stimuli evoked consistent patterns of neural activity in the neurons projecting to the spinal cord, which we could map throughout the entire population using in vivo two-photon calcium imaging. We found that stimuli that drive distinct behaviors activated distinct subsets of projection neurons, consisting, in some cases, of just a few cells. This stands in contrast to the distributed activation seen for more complex behaviors. Furthermore, targeted cell by cell ablations of the neurons associated with evoked turns abolished the corresponding behavioral response. This description of the functional organization of the zebrafish motor system provides a framework for identifying the complete circuit underlying a vertebrate behavior.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping