ZFIN ID: ZDB-PERS-110131-2
Czopka, Tim
Email: tim.czopka@ed.ac.uk
URL: http://www.czopka-lab.com
Affiliation: Tim Czopka Lab
Address: University of Edinburgh Centre for Clinical Brain Sciences Chancellor's Building 49 Little France Crescent Edinburgh EH16 4SB United Kingdom
Country: United Kingdom
Phone: +44 131 242 6249
Fax:
ORCID ID: 0000-0002-6824-8112


BIOGRAPHY AND RESEARCH INTERESTS
I studied Biology and obtained my PhD in Neuroscience in 2009 from the Ruhr-University Bochum (Germany). Following my postdoctoral research at the University of Edinburgh (UK), I became a Principal Investigator in 2015 at the Technical University of Munich (Germany). In 2020 my group moved to University of Edinburgh (UK).

My lab aims to understand how oligodendrocytes communicate with neurons, and how these interactions affect the brain.

About 5% of all brain cells are undifferentiated oligodendrocyte precursor cells which tile the brain throughout life. These cells sense nervous system activity and represent the cellular source for new myelin during long-term development, plastic adaptations, and CNS regeneration. However, there are many more oligodendrocyte precursors than ever differentiate, but which still constantly communicate with surrounding neurons and other CNS cells. How this cell population can be triggered to produce new myelin, and how the non-myelinating oligoendrocytes affect nervous system function, remains unclear.

To address this, we use zebrafish as model organism and a wide range of complementary methods including high-resolution optical microscopy of live cell reporters, optophysiology and biomolecular sensor imaging, cellular genetic manipulations, and behavioural analysis.


PUBLICATIONS
Li, J., Miramontes, T.G., Czopka, T., Monk, K.R. (2024) Synaptic input and Ca2+ activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. Nature Neuroscience. 27(2):219-231
Xiao, Y., Petrucco, L., Hoodless, L.J., Portugues, R., Czopka, T. (2022) Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nature Neuroscience. 25(3):280-284
Vagionitis, S., Auer, F., Xiao, Y., Almeida, R.G., Lyons, D.A., Czopka, T. (2022) Clusters of neuronal neurofascin prefigure the position of a subset of nodes of Ranvier along individual central nervous system axons in vivo. Cell Reports. 38:110366
Sanchez-Gonzalez, R., Koupourtidou, C., Lepko, T., Zambusi, A., Novoselc, K.T., Durovic, T., Aschenbroich, S., Schwarz, V., Breunig, C.T., Straka, H., Huttner, H.B., Irmler, M., Beckers, J., Wurst, W., Zwergal, A., Schauer, T., Straub, T., Czopka, T., Trümbach, D., Götz, M., Stricker, S.H., Ninkovic, J. (2022) Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells. 11(3):
Siems, S.B., Jahn, O., Hoodless, L.J., Jung, R.B., Hesse, D., Möbius, W., Czopka, T., Werner, H.B. (2021) Proteome Profile of Myelin in the Zebrafish Brain. Frontiers in cell and developmental biology. 9:640169
Marisca, R., Hoche, T., Agirre, E., Hoodless, L.J., Barkey, W., Auer, F., Castelo-Branco, G., Czopka, T. (2020) Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nature Neuroscience. 23(3):363-374
Tian, W., Czopka, T., López-Schier, H. (2020) Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Communications biology. 3:49
Almeida, R.G., Pan, S., Cole, K.L.H., Williamson, J.M., Early, J.J., Czopka, T., Klingseisen, A., Chan, J.R., Lyons, D.A. (2018) Myelination of Neuronal Cell Bodies when Myelin Supply Exceeds Axonal Demand. Current biology : CB. 28(8):1296-1305.e5
Auer, F., Vagionitis, S., Czopka, T. (2018) Evidence for Myelin Sheath Remodeling in the CNS Revealed by In Vivo Imaging. Current biology : CB. 28(4):549-559.e3
Vagionitis, S., Czopka, T. (2018) Visualization and Time-Lapse Microscopy of Myelinating Glia In Vivo in Zebrafish. Methods in molecular biology (Clifton, N.J.). 1791:25-35
Karttunen, M.J., Czopka, T., Goedhart, M., Early, J.J., Lyons, D.A. (2017) Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber. PLoS One. 12:e0178058
Czopka, T. (2016) Insights into mechanisms of central nervous system myelination using zebrafish. Glia. 64(3):333-49
Nawaz, S., Sánchez, P., Schmitt, S., Snaidero, N., Mitkovski, M., Velte, C., Brückner, B.R., Alexopoulos, I., Czopka, T., Jung, S.Y., Rhee, J.S., Janshoff, A., Witke, W., Schaap, I.A., Lyons, D.A., Simons, M. (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Developmental Cell. 34:139-51
Mensch, S., Baraban, M., Almeida, R., Czopka, T., Ausborn, J., El Manira, A., Lyons, D. A. (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nature Neuroscience. 18:628-630
Czopka, T., Ffrench-Constant, C., and Lyons, D.A. (2013) Individual Oligodendrocytes Have Only a Few Hours in which to Generate New Myelin Sheaths In Vivo. Developmental Cell. 25(6):599-609
Almeida, R.G., Czopka, T., Ffrench-Constant, C., and Lyons, D.A. (2011) Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development (Cambridge, England). 138(20):4443-50
Czopka, T., and Lyons, D.A. (2011) Dissecting mechanisms of myelinated axon formation using zebrafish. Methods in cell biology. 105:25-62

NON-ZEBRAFISH PUBLICATIONS
Czopka T, von Holst A, ffrench-Constant C, Faissner A (2010) Regulatory mechanisms that mediate Tenascin C-dependent inhibition of oligodendrocyte precursor differentiation. J Neurosci 30(37): 12310-12322

Czopka T, Hennen E, von Holst A, Faissner A (2009) Novel conserved oligodendrocyte surface epitope identified by monoclonal antibody 4860. Cell Tissue Res 338(2): 161-170

Czopka T, von Holst A, Schmidt G, ffrench-Constant C, Faissner A (2009) Tenascin C and Tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway. Glia 57(16): 1790-1801