ZFIN ID: ZDB-PERS-100324-1
Shin, Donghun
Email: donghuns@pitt.edu
URL: https://www.devbio.pitt.edu/people/donghun-shin-phd
Affiliation: Shin Lab
Address: University of Pittsburgh 3501 5th Ave. #5063 Pittsburgh, PA 15260 USA
Country: United States
Phone: 412-624-2144
Fax:
ORCID ID:


BIOGRAPHY AND RESEARCH INTERESTS
My goals are to understand the molecular and cellular mechanisms regulating liver development and regeneration. In particular, I am interested in molecular mechanisms underlying liver progenitor cell-driven liver regeneration.


PUBLICATIONS
Rizvi, F., Lee, Y.R., Diaz-Aragon, R., Bawa, P.S., So, J., Florentino, R.M., Wu, S., Sarjoo, A., Truong, E., Smith, A.R., Wang, F., Everton, E., Ostrowska, A., Jung, K., Tam, Y., Muramatsu, H., Pardi, N., Weissman, D., Soto-Gutierrez, A., Shin, D., Gouon-Evans, V. (2023) VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. Cell Stem Cell. 30(12):1640-1657.e8
Kim, M., So, J., Shin, D. (2023) PPARα activation promotes liver progenitor cell-mediated liver regeneration by suppressing YAP signaling in zebrafish. Scientific Reports. 13:1831218312
Glessner, J.T., Ningappa, M.B., Ngo, K.A., Zahid, M., So, J., Higgs, B.W., Sleiman, P.M.A., Narayanan, T., Ranganathan, S., March, M., Prasadan, K., Vaccaro, C., Reyes-Mugica, M., Velazquez, J., Salgado, C.M., Ebrahimkhani, M.R., Schmitt, L., Rajasundaram, D., Paul, M., Pellegrino, R., Gittes, G.K., Li, D., Wang, X., Billings, J., Squires, R., Ashokkumar, C., Sharif, K., Kelly, D., Dhawan, A., Horslen, S., Lo, C.W., Shin, D., Subramaniam, S., Hakonarson, H., Sindhi, R. (2023) Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. Journal of hepatology. 79(6):1385-1395
Lee, S.H., So, J., Shin, D. (2023) Hepatocyte-to-cholangiocyte conversion occurs through transdifferentiation independently of proliferation in zebrafish. Hepatology (Baltimore, Md.). 77(4):1198-1210
Pozo-Morales, M., Garteizgogeascoa, I., Perazzolo, C., So, J., Shin, D., Singh, S.P. (2022) In vivo imaging of calcium dynamics in zebrafish hepatocytes. Hepatology (Baltimore, Md.). 77(3):789-801
Jung, K., Kim, M., So, J., Lee, S.H., Ko, S., Shin, D. (2020) Farnesoid X receptor activation impairs liver progenitor cell-mediated liver regeneration via the PTEN-PI3K-AKT-mTOR axis in zebrafish. Hepatology (Baltimore, Md.). 74(1):397-410
Min, J., Ningappa, M., So, J., Shin, D., Sindhi, R., Subramaniam, S. (2020) Systems Analysis of Biliary Atresia Through Integration of High-Throughput Biological Data. Frontiers in Physiology. 11:966
So, J., Kim, M., Lee, S.H., Ko, S., Lee, D.A., Park, H., Azuma, M., Parsons, M.J., Prober, D., Shin, D. (2020) Attenuating the EGFR-ERK-SOX9 axis promotes liver progenitor cell-mediated liver regeneration in zebrafish. Hepatology (Baltimore, Md.). 73(4):1494-1508
Russell, J.O., Ko, S., Monga, S.P., Shin, D. (2019) Notch Inhibition Promotes Differentiation of Liver Progenitor Cells into Hepatocytes via sox9b Repression in Zebrafish. Stem Cells International. 2019:8451282
Ko, S., Shin, D. (2019) Chemical Screening Using a Zebrafish Model for Liver Progenitor Cell-Driven Liver Regeneration. Methods in molecular biology (Clifton, N.J.). 1905:83-90
Ko, S., Russell, J.O., Tian, J., Gao, C., Kobayashi, M., Feng, R., Yuan, X., Shao, C., Ding, H., Poddar, M., Singh, S., Locker, J., Weng, H.L., Monga, S.P., Shin, D. (2018) Hdac1 Regulates Differentiation of Bipotent Liver Progenitor Cells During Regeneration via Sox9b and Cdk8. Gastroenterology. 156(1):187-202.e14
Khaliq, M., Ko, S., Liu, Y., Wang, H., Sun, Y., Solnica-Krezel, L., Shin, D. (2018) Stat3 regulates liver progenitor cell-driven liver regeneration in zebrafish. Gene Expression. 18(3):157-170
Russell, J.O., Ko, S., Saggi, H.S., Singh, S., Poddar, M., Shin, D., Monga, S.P. (2018) Bromodomain and Extraterminal (BET) Proteins Regulate Hepatocyte Proliferation in Hepatocyte-Driven Liver Regeneration. The American journal of pathology. 188(6):1389-1405
So, J., Khaliq, M., Evason, K., Ninov, N., Martin, B.L., Stainier, D.Y.R., Shin, D. (2017) Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating Notch activity. Hepatology (Baltimore, Md.). 67(6):2352-2366
Choi, T.Y., Khaliq, M., Tsurusaki, S., Ninov, N., Stainier, D.Y.R., Tanaka, M., Shin, D. (2017) Bmp Signaling Governs Biliary-Driven Liver Regeneration in Zebrafish via Tbx2b and Id2a. Hepatology (Baltimore, Md.). 66(5):1616-1630
Wu, J., Choi, T.Y., Shin, D. (2017) tomm22 Knockdown-Mediated Hepatocyte Damages Elicit Both the Formation of Hybrid Hepatocytes and Biliary Conversion to Hepatocytes in Zebrafish Larvae.. Gene Expression. 17(3):237-249
Zhao, X., Lorent, K., Wilkins, B., Marchione, D.M., Gillespie, K., Waisbourd-Zinman, O., So, J., Koo, K.A., Shin, D., Porter, J.R., Wells, R.G., Blair, I., Pack, M. (2016) Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology (Baltimore, Md.). 64(3):894-907
Ko, S., Choi, T.Y., Russell, J.O., So, J., Monga, S.P., Shin, D. (2016) Bromodomain and extraterminal (BET) proteins regulate biliary-driven liver regeneration. Journal of hepatology. 64(2):316-25
Khaliq, M., Choi, T.Y., So, J., Shin, D. (2015) Id2a is required for hepatic outgrowth during liver development in zebrafish. Mechanisms of Development. 138 Pt 3:399-414
Ningappa, M., So, J., Glessner, J., Ashokkumar, C., Ranganathan, S., Min, J., Higgs, B.W., Sun, Q., Haberman, K., Schmitt, L., Vilarinho, S., Mistry, P.K., Vockley, G., Dhawan, A., Gittes, G.K., Hakonarson, H., Jaffe, R., Subramaniam, S., Shin, D., Sindhi, R. (2015) The Role of ARF6 in Biliary Atresia. PLoS One. 10:e0138381
Choi, T.Y., Khaliq, M., Ko, S., So, J., Shin, D. (2015) Hepatocyte-specific Ablation in Zebrafish to Study Biliary-driven Liver Regeneration. Journal of visualized experiments : JoVE. (99):e52785
Delgado, E.R., Yang, J., So, J., Leimgruber, S., Kahn, M., Ishitani, T., Shin, D., Wilson, G.M., Monga, S.P. (2014) Identification and Characterization of a Novel Small-Molecule Inhibitor of beta-Catenin Signaling. The American journal of pathology. 184(7):2111-22
Choi, T.Y., Ninov, N., Stainier, D.Y., and Shin, D. (2014) Extensive Conversion of Hepatic Biliary Epithelial Cells to Hepatocytes after Near Total Loss of Hepatocytes in Zebrafish. Gastroenterology. 146(3):776-88
Stuckenholz, C., Lu, L., Thakur, P.C., Choi, T.Y., Shin, D., and Bahary, N. (2013) Sfrp5 Modulates Both Wnt and BMP Signaling and Regulates Gastrointestinal Organogensis in the Zebrafish, Danio rerio. PLoS One. 8(4):e62470
So, J., Martin, B.L., Kimelman, D., and Shin, D. (2013) Wnt/beta-catenin signaling cell-autonomously converts non-hepatic endodermal cells to a liver fate. Biology Open. 2(1):30-36
Boglev, Y., Badrock, A.P., Trotter, A.J., Du, Q., Richardson, E.J., Parslow, A.C., Markmiller, S.J., Hall, N.E., de Jong-Curtain, T.A., Ng, A.Y., Verkade, H., Ober, E.A., Field, H.A., Shin, D., Shin, C.H., Hannan, K.M., Hannan, R.D., Pearson, R.B., Kim, S.H., Ess, K.C., Lieschke, G.J., Stainier, D.Y., and Heath, J.K. (2013) Autophagy induction is a tor- and tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis. PLoS Genetics. 9(2):e1002379
Shin, D., Weidinger, G., Moon, R.T., and Stainier, D.Y. (2012) Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver. Mechanisms of Development. 128(11-12):525-535
Delous, M., Yin, C., Shin, D., Ninov, N., Debrito Carten, J., Pan, L., Ma, T.P., Farber, S.A., Moens, C.B., and Stainier, D.Y. (2012) sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development. PLoS Genetics. 8(6):e1002754
Shin, D., Lee, Y., Poss, K.D., and Stainier, D.Y. (2011) Restriction of hepatic competence by Fgf signaling. Development (Cambridge, England). 138(7):1339-1348
Anderson, R.M., Bosch, J.A., Goll, M.G., Hesselson, D., Dong, P.D., Shin, D., Chi, N.C., Shin, C.H., Schlegel, A., Halpern, M., and Stainier, D.Y. (2009) Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Developmental Biology. 334(1):213-223
Shin, D., Shin, C.H., Tucker, J., Ober, E.A., Rentzsch, F., Poss, K.D., Hammerschmidt, M., Mullins, M.C., and Stainier, D.Y. (2007) Bmp and Fgf signaling are essential for liver specification in zebrafish. Development (Cambridge, England). 134(11):2041-2050

NON-ZEBRAFISH PUBLICATIONS
Shin D, Anderson DJ (2005), Isolation of arterial-specific genes by subtractive hybridization reveals molecular heterogeneity among arterial endothelial cells. Dev Dyn, 233(4):1589-604.

Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002), Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell, 109(6):693-705.

Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G, Isner J, Folkman J, Gimbrone MA Jr, Anderson DJ (2001), Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol, 230(2):139-50.

Yoo SJ, Kim HH, Shin DH, Lee CS, Seong IS, Seol JH, Shimbara N, Tanaka K, Chung CH (1998), Effects of the cys mutations on structure and function of the ATP-dependent HslVU protease in Escherichia coli. The Cys287 to Val mutation in HslU uncouples the ATP-dependent proteolysis by HslvU from ATP hydrolysis. J Biol Chem, 273(36):22929-35.

Seol JH, Yoo SJ, Shin DH, Shim YK, Kang MS, Goldberg AL, Chung CH (1997), The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur J Biochem, 247(3):1143-50.

Yoo SJ, Seol JH, Shin DH, Rohrwild M, Kang MS, Tanaka K, Goldberg AL, Chung CH (1996), Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem, 271(24):14035-40.

Shin DH, Yoo SJ, Shim YK, Seol JH, Kang MS, Chung CH (1996), Mutational analysis of the ATP-binding site in HslU, the ATPase component of HslVU protease in Escherichia coli. FEBS Lett, 398(2-3):151-4.