ZFIN ID: ZDB-PERS-070206-1
Ramakrishnan, Lalita
Email: lalitar@u.washington.edu
URL:
Affiliation: Ramakrishnan Lab
Address: Department of Microbiology Box 357242 University of Washington K443C Health Sciences Building 1959 NE Pacific Street Seattle, WA 98195-7242 USA
Country: United States
Phone: 206-616-4286
Fax: 206-616-1575
ORCID ID:


BIOGRAPHY AND RESEARCH INTERESTS


PUBLICATIONS
Pagán, A.J., Lee, L.J., Edwards-Hicks, J., Moens, C.B., Tobin, D.M., Busch-Nentwich, E.M., Pearce, E.L., Ramakrishnan, L. (2022) mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. Cell. 185(20):3720-3738.e13
Roca, F.J., Whitworth, L.J., Prag, H.A., Murphy, M.P., Ramakrishnan, L. (2022) Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science (New York, N.Y.). 376:eabh2841
Takaki, K.K., Rinaldi, G., Berriman, M., Pagán, A.J., Ramakrishnan, L. (2020) Schistosoma mansoni Eggs Modulate the Timing of Granuloma Formation to Promote Transmission. Cell Host & Microbe. 29(1):58-67.e5
Osman, M.M., Pagán, A.J., Shanahan, J.K., Ramakrishnan, L. (2020) Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage. PLoS One. 15:e0233252
Ramakrishnan, L. (2020) Mycobacterium tuberculosis pathogenicity viewed through the lens of molecular Koch's postulates. Current opinion in microbiology. 54:103-110
Roca, F.J., Whitworth, L.J., Redmond, S., Jones, A.A., Ramakrishnan, L. (2019) TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell. 178(6):1344-1361.e11
Hernandez, R.E., Galitan, L., Cameron, J., Goodwin, N., Ramakrishnan, L. (2018) Delay of Initial Feeding of Zebrafish Larvae Until 8 Days Postfertilization Has No Impact on Survival or Growth Through the Juvenile Stage. Zebrafish. 15(5):515-518
Takaki, K., Ramakrishnan, L., Basu, S. (2018) A zebrafish model for ocular tuberculosis. PLoS One. 13:e0194982
Stainier, D.Y.R., Raz, E., Lawson, N.D., Ekker, S.C., Burdine, R.D., Eisen, J.S., Ingham, P.W., Schulte-Merker, S., Yelon, D., Weinstein, B.M., Mullins, M.C., Wilson, S.W., Ramakrishnan, L., Amacher, S.L., Neuhauss, S.C.F., Meng, A., Mochizuki, N., Panula, P., Moens, C.B. (2017) Guidelines for morpholino use in zebrafish. PLoS Genetics. 13:e1007000
Cambier, C.J., O'Leary, S.M., O'Sullivan, M.P., Keane, J., Ramakrishnan, L. (2017) Phenolic Glycolipid Facilitates Mycobacterial Escape from Microbicidal Tissue-Resident Macrophages. Immunity. 47(3):552-565.e4
Madigan, C.A., Cameron, J., Ramakrishnan, L. (2017) A Zebrafish Model of Mycobacterium leprae Granulomatous Infection. The Journal of infectious diseases. 216:776-779
Madigan, C.A., Cambier, C.J., Kelly-Scumpia, K.M., Scumpia, P.O., Cheng, T.Y., Zailaa, J., Bloom, B.R., Moody, D.B., Smale, S.T., Sagasti, A., Modlin, R.L., Ramakrishnan, L. (2017) A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell. 170:973-985.e10
Conrad, W.H., Osman, M.M., Shanahan, J.K., Chu, F., Takaki, K.K., Cameron, J., Hopkinson-Woolley, D., Brosch, R., Ramakrishnan, L. (2017) Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proceedings of the National Academy of Sciences of the United States of America. 114:1371-1376
Levitte, S., Adams, K.N., Berg, R.D., Cosma, C.L., Urdahl, K.B., Ramakrishnan, L. (2016) Mycobacterial Acid Tolerance Enables Phagolysosomal Survival and Establishment of Tuberculous Infection In Vivo. Cell Host & Microbe. 20:250-258
Berg, R.D., Levitte, S., O'Sullivan, M.P., O'Leary, S.M., Cambier, C.J., Cameron, J., Takaki, K.K., Moens, C.B., Tobin, D.M., Keane, J., Ramakrishnan, L. (2016) Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration. Cell. 165:139-152
Pagán, A.J., Yang, C.T., Cameron, J., Swaim, L.E., Ellett, F., Lieschke, G.J., Ramakrishnan, L. (2015) Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment. Cell Host & Microbe. 18:15-26
Pagán, A.J., Ramakrishnan, L. (2014) Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harbor Perspectives in Medicine. 5(9)
Patton, E.E., Dhillon, P., Amatruda, J.F., Ramakrishnan, L. (2014) Spotlight on Zebrafish: Translational Impact. Disease models & mechanisms. 7:731-733
Cambier, C.J., Takaki, K.K., Larson, R.P., Hernandez, R.E., Tobin, D.M., Urdahl, K.B., Cosma, C.L., and Ramakrishnan, L. (2014) Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature. 505(7482):218-222
Tobin, D.M., and Ramakrishnan, L. (2013) TB: the Yin and Yang of lipid mediators. Current opinion in pharmacology. 13(4):641-5
Takaki, K., Davis, J.M., Winglee, K., and Ramakrishnan, L. (2013) Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish. Nature Protocols. 8(6):1114-1124
Roca, F.J., and Ramakrishnan, L. (2013) TNF Dually Mediates Resistance and Susceptibility to Mycobacteria via Mitochondrial Reactive Oxygen Species. Cell. 153(3):521-34
Ramakrishnan, L. (2013) Looking within the zebrafish to understand the tuberculous granuloma. Advances in experimental medicine and biology. 783:251-266
Ramakrishnan, L. (2013) The Zebrafish Guide to Tuberculosis Immunity and Treatment. Cold Spring Harbor symposia on quantitative biology. 78:179-192
Yang, C.T., Cambier, C.J., Davis, J.M., Hall, C.J., Crosier, P.S., and Ramakrishnan, L. (2012) Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host & Microbe. 12(3):301-312
Takaki, K., Cosma, C.L., Troll, M.A., and Ramakrishnan, L. (2012) An in vivo platform for rapid high-throughput antitubercular drug discovery. Cell Reports. 2(1):175-184
Tobin, D.M., Roca, F.J., Oh, S.F., McFarland, R., Vickery, T.W., Ray, J.P., Ko, D.C., Zou, Y., Bang, N.D., Chau, T.T., Vary, J.C., Hawn, T.R., Dunstan, S.J., Farrar, J.J., Thwaites, G.E., King, M.C., Serhan, C.N., and Ramakrishnan, L. (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell. 148(3):434-446
Adams, K.N., Takaki, K., Connolly, L.E., Wiedenhoft, H., Winglee, K., Humbert, O., Edelstein, P.H., Cosma, C.L., and Ramakrishnan, L. (2011) Drug Tolerance in Replicating Mycobacteria Mediated by a Macrophage-Induced Efflux Mechanism. Cell. 145(1):39-53
Tobin, D.M., Vary, J.C. Jr, Ray, J.P., Walsh, G.S., Dunstan, S.J., Bang, N.D., Hagge, D.A., Khadge, S., King, M.C., Hawn, T.R., Moens, C.B., and Ramakrishnan, L. (2010) The lta4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans. Cell. 140(5):717-730
Volkman, H.E., Pozos, T.C., Zheng, J., Davis, J.M., Rawls, J.F., and Ramakrishnan, L. (2010) Tuberculous Granuloma Induction via Interaction of a Bacterial Secreted Protein with Host Epithelium. Science (New York, N.Y.). 327(5964):466-469
Davis, J.M., Haake, D.A., and Ramakrishnan, L. (2009) Leptospira interrogans Stably Infects Zebrafish Embryos, Altering Phagocyte Behavior and Homing to Specific Tissues. PLoS neglected tropical diseases. 3(6):e463
Brannon, M.K., Davis, J.M., Mathias, J.R., Hall, C.J., Emerson, J.C., Crosier, P.S., Huttenlocher, A., Ramakrishnan, L., and Moskowitz, S.M. (2009) Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cellular Microbiology. 11(5):755-768
Davis, J.M., and Ramakrishnan, L. (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 136(1):37-49
Clay, H., Volkman, H.E., and Ramakrishnan, L. (2008) Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity. 29(2):283-294
Lesley, R., and Ramakrishnan, L. (2008) Insights into early mycobacterial pathogenesis from the zebrafish. Current opinion in microbiology. 11(3):277-283
Tobin, D.M., and Ramakrishnan, L. (2008) Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cellular Microbiology. 10(5):1027-1039
Clay, H., Davis, J.M., Beery, D., Huttenlocher, A., Lyons, S.E., and Ramakrishnan, L. (2007) Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host & Microbe. 2(1):29-39
Cosma, C.L., Swaim, L.E., Volkman, H., Ramakrishnan, L., and Davis, J.M. (2006) Zebrafish and Frog Models of Mycobacterium marinum Infection. Current protocols in microbiology. Chapter 10:Unit10B.2
Swaim, L.E., Connolly, L.E., Volkman, H.E., Humbert, O., Born, D.E., and Ramakrishnan, L. (2006) Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infection and Immunity. 74(11):6108-6117
Cosma, C.L., Klein, K., Kim, R., Beery, D., and Ramakrishnan, L. (2006) Mycobacterium marinum Erp Is a Virulence Determinant Required for Cell Wall Integrity and Intracellular Survival. Infection and Immunity. 74(6):3125-3133
Volkman, H.E., Clay, H., Beery, D., Chang, J.C., Sherman, D.R., and Ramakrishnan, L. (2004) Tuberculous Granuloma Formation Is Enhanced by a Mycobacterium Virulence Determinant. PLoS Biology. 2(11):e367
Pozos, T.C., and Ramakrishnan, L. (2004) New models for the study of Mycobacterium-host interactions. Current opinion in immunology. 16(4):499-505
Cosma, C.L., Humbert, O., and Ramakrishnan, L. (2004) Superinfecting mycobacteria home to established tuberculous granulomas. Nature immunology. 5(8):828-835
Davis, J.M., Clay, H., Lewis, J.L., Ghori, N., Herbomel, P., and Ramakrishnan, L. (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 17(6):693-702

NON-ZEBRAFISH PUBLICATIONS