ZFIN ID: ZDB-PERS-000913-6
Burns (Erter), Caroline
Email: Caroline.Burns@childrens.harvard.edu
URL:
Affiliation: Geoff Burns Lab
and also: Burns Lab
Address: Department of Cardiology Boston Children's Hospital/Harvard Medical School 300 Longwood Avenue, BCH3109 Boston, MA. 02115
Country: United States
Phone:
Fax:
ORCID ID:


BIOGRAPHY AND RESEARCH INTERESTS


PUBLICATIONS
Shin, M., Yin, H.M., Shih, Y.H., Nozaki, T., Portman, D., Toles, B., Kolb, A., Luk, K., Isogai, S., Ishida, K., Hanasaka, T., Parsons, M.J., Wolfe, S.A., Burns, C.E., Burns, C.G., Lawson, N.D. (2023) Generation and application of endogenously floxed alleles for cell-specific knockout in zebrafish. Developmental Cell. 58(22):2614-2626.e7
Akerberg, A.A., Trembley, M., Butty, V., Schwertner, A., Zhao, L., Beerens, M., Liu, X., Mahamdeh, M., Yuan, S., Boyer, L., MacRae, C., Nguyen, C., Pu, W.T., Burns, C.E., Burns, C.G. (2022) RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circulation research. 131(12):980-1000
Huang, M., Akerberg, A.A., Zhang, X., Yoon, H., Joshi, S., Hallinan, C., Nguyen, C., Pu, W.T., Haigis, M.C., Burns, C.G., Burns, C.E. (2022) Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome. Nature communications. 13:5877
Sharpe, M., González-Rosa, J.M., Wranitz, F., Jeffrey, S., Copenhaver, K., Burns, C.G., Burns, C.E. (2022) Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Frontiers in cell and developmental biology. 10:800594
Abrial, M., Basu, S., Huang, M., Butty, V., Schwertner, A., Jeffrey, S., Jordan, D., Burns, C.E., Burns, C.G. (2022) Latent TGFβ binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Disease models & mechanisms. 15(3):
Akerberg, A.A., Burns, C.E., Burns, C.G., Nguyen, C. (2019) Deep learning enables automated volumetric assessments of cardiac function in zebrafish. Disease models & mechanisms. 12(10):
Ben-Yair, R., Butty, V.L., Busby, M., Qiu, Y., Levine, S.S., Goren, A., Boyer, L.A., Burns, C.G., Burns, C.E. (2019) H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development (Cambridge, England). 146(19):
Akerberg, A.A., Burns, C.E., Burns, C.G. (2019) Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatric Cardiology. 40(7):1410-1418
Gálvez-Santisteban, M., Chen, D., Zhang, R., Serrano, R., Nguyen, C., Zhao, L., Nerb, L., Masutani, E.M., Vermot, J., Burns, C.G., Burns, C.E., Del Álamo, J.C., Chi, N.C. (2019) Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. eLIFE. 8:
Zhao, L., Ben-Yair, R., Burns, C.E., Burns, C.G. (2019) Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Reports. 26:546-554.e5
Guner-Ataman, B., González-Rosa, J.M., Shah, H.N., Butty, V.L., Jeffrey, S., Abrial, M., Boyer, L.A., Burns, C.G., Burns, C.E. (2018) Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Reports. 24:1342-1354.e5
González-Rosa, J.M., Sharpe, M., Field, D., Soonpaa, M.H., Field, L.J., Burns, C.E., Burns, C.G. (2018) Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Developmental Cell. 44:433-446.e7
Natarajan, N., Abbas, Y., Bryant, D.M., Gonzalez-Rosa, J.M., Sharpe, M., Uygur, A., Cocco-Delgado, L.H., Ho, N.N., Gerard, N.P., Gerard, C.J., Macrae, C.A., Burns, C.E., Burns, C.G., Whited, J.L., Lee, R.T. (2018) Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation. 137(20):2152-2165
Paffett-Lugassy, N., Novikov, N., Jeffrey, S., Abrial, M., Guner-Ataman, B., Sakthivel, S., Burns, C.E., Burns, C.G. (2017) Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development (Cambridge, England). 144(24):4616-4624
González-Rosa, J.M., Burns, C.E., Burns, C.G. (2017) Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England). 4:105-123
Abrial, M., Paffett-Lugassy, N., Jeffrey, S., Jordan, D., O'Loughlin, E., Frederick, C.J., Burns, C.G., Burns, C.E. (2017) TGF-β Signaling Is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation. Cell Reports. 20:973-983
Manalo, T., May, A., Quinn, J., Lafontant, D.S., Shifatu, O., He, W., Gonzalez-Rosa, J.M., Burns, G.C., Burns, C.E., Burns, A.R., Lafontant, P.J. (2016) Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio (Devario aequipinnatus) and Zebrafish (Danio rerio) Hearts. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 64(11):687-714
Han, P., Bloomekatz, J., Ren, J., Zhang, R., Grinstein, J.D., Zhao, L., Burns, C.G., Burns, C.E., Anderson, R.M., Chi, N.C. (2016) Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature. 534:700-4
Jahangiri, L., Sharpe, M., Novikov, N., González-Rosa, J.M., Borikova, A., Nevis, K., Paffett-Lugassy, N., Zhao, L., Adams, M., Guner-Ataman, B., Burns, C.E., Burns, C.G. (2016) The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development (Cambridge, England). 143:113-22
Mosimann, C., Panáková, D., Werdich, A.A., Musso, G., Burger, A., Lawson, K.L., Carr, L.A., Nevis, K.R., Sabeh, M.K., Zhou, Y., Davidson, A.J., DiBiase, A., Burns, C.E., Burns, C.G., MacRae, C.A., Zon, L.I. (2015) Chamber identity programs drive early functional partitioning of the heart. Nature communications. 6:8146
Mahmoud, A.I., O'Meara, C.C., Gemberling, M., Zhao, L., Bryant, D.M., Zheng, R., Gannon, J.B., Cai, L., Choi, W.Y., Egnaczyk, G.F., Burns, C.E., Burns, C.G., MacRae, C.A., Poss, K.D., Lee, R.T. (2015) Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Developmental Cell. 34(4):387-99
Harrison, M.R., Bussmann, J., Huang, Y., Zhao, L., Osorio, A., Burns, C.G., Burns, C.E., Sucov, H.M., Siekmann, A.F., Lien, C.L. (2015) Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Developmental Cell. 33:442-54
Jang, I.H., Lu, Y.F., Zhao, L., Wenzel, P.L., Kume, T., Datta, S.M., Arora, N., Guiu, J., Lagha, M., Kim, P.G., Do, E.K., Kim, J.H., Schlaeger, T.M., Zon, L.I., Bigas, A., Burns, C.E., Daley, G.Q. (2015) Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood. 125(9):1418-26
Zhao, L., Borikova, A.L., Ben-Yair, R., Guner-Ataman, B., MacRae, C.A., Lee, R.T., Burns, C.G., and Burns, C.E. (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America. 111(4):1403-1408
Paffett-Lugassy, N., Singh, R., Nevis, K.R., Guner-Ataman, B., O'Loughlin, E., Jahangiri, L., Harvey, R.P., Burns, C.G., and Burns, C.E. (2013) Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nature cell biology. 15(11):1362-1369
Guner-Ataman, B., Paffett-Lugassy, N., Adams, M.S., Nevis, K.R., Jahangiri, L., Obregon, P., Kikuchi, K., Poss, K.D., Burns, C.E., and Burns, C.G. (2013) Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development (Cambridge, England). 140(6):1353-1363
Taylor, A.M., Humphries, J.M., White, R.M., Murphey, R.D., Burns, C.E., and Zon, L.I. (2012) Hematopoietic defects in rps29 mutant zebrafish depend upon p53 activation. Experimental hematology. 40(3):228-237
Zhou, Y., Cashman, T.J., Nevis, K.R., Obregon, P., Carney, S.A., Liu, Y., Gu, A., Mosimann, C., Sondalle, S., Peterson, R.E., Heideman, W., Burns, C.E., and Burns, C.G. (2011) Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature. 474(7353):645-8
de Jong, J.L., Burns, C.E., Chen, A.T., Pugach, E., Mayhall, E.A., Smith, A.C., Feldman, H.A., Zhou, Y., and Zon, L.I. (2011) Characterization of immune-matched hematopoietic transplantation in zebrafish. Blood. 117(16):4234-42
Deacon, D.C., Nevis, K.R., Cashman, T.J., Zhou, Y., Zhao, L., Washko, D., Guner-Ataman, B., Burns, C.G., and Burns, C.E. (2010) The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development (Cambridge, England). 137(11):1887-1896
Burns, C.E., Galloway, J.L., Smith, A.C., Keefe, M.D., Cashman, T.J., Paik, E.J., Mayhall, E.A., Amsterdam, A.H., and Zon, L.I. (2009) A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood. 113(23):5776-5782
White, R.M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C. Bourque, C., Dovey, M., Goessling, W., Burns, C.E., and Zon, L.I. (2008) Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis. Cell Stem Cell. 2(2):183-189
Imamura, S., Uchiyama, J., Koshimizu, E., Hanai, J., Raftopoulou, C., Murphey, R.D., Bayliss, P.E., Imai, Y., Burns, C.E., Masutomi, K., Gagos, S., Zon, L.I., Roberts, T.M., and Kishi, S. (2008) A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One. 3(10):e3364
Peng, C.Y., Yajima, H., Burns, C.E., Zon, L.I., Sisodia, S.S., Pfaff, S.L., and Sharma, K. (2007) Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord. Neuron. 53(6):813-827
Burns, C.G., and MacRae, C.A. (2006) Purification of hearts from zebrafish embryos. Biotechniques. 40(3):274, 276, 278
Burns, C.E., Traver, D., Mayhall, E., Shepard, J.L., and Zon, L.I. (2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes & Development. 19(19):2331-2342
Ransom, D.G., Bahary, N., Niss, K., Traver, D., Burns, C., Trede, N.S., Paffett-Lugassy, N., Saganic, W.J., Lim, C.A., Hersey, C., Zhou, Y., Barut, B.A., Lin, S., Kingsley, P.D., Palis, J., Orkin, S.H., and Zon, L.I. (2004) The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1gamma, an Essential Regulator of Hematopoiesis. PLoS Biology. 2(8):E237
Burns, C.E., DeBlasio, T., Zhou, Y., Zhang, J., Zon, L., and Nimer, S.D. (2002) Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Experimental hematology. 30(12):1381-1389
Burns, C. and Zon, L. (2002) Portrait of a stem cell. Developmental Cell. 3:612-613
Erter, C.E., Wilm, T.P., Basler, N., Wright, C.V., and Solnica-Krezel, L. (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development (Cambridge, England). 128(18):3571-3583
Gonzalez, E.M., Fekany-Lee, K., Carmany-Rampey, A., Erter, C., Topczewski, J., Wright, C.V.E., and Solnica-Krezel, L. (2000) Head and trunk in zebrafish arise via coinhibition of BMP signaling by bozozok and chordino. Genes & Development. 14(24):3087-3092
Erter, C.E. (2000) Nodal-related signaling during zebrafish embryogenesis. Ph.D. Thesis.
Erter, C.E., Solnica-Krezel, L., and Wright, C.V.E. (1998) Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Developmental Biology. 204:361-372

NON-ZEBRAFISH PUBLICATIONS