ZFIN ID: ZDB-LAB-060905-1
Vernier Lab
PI/Director: Vernier, Philippe
Co-PI / Senior
Vincent, Jean-Didier
Contact Person: Vernier, Philippe
Email: depsn@inaf.cnrs-gif.fr
URL: http://www.iaf.cnrs-gif.fr/eng/depsn/index.html
Address: Développement, Evolution, Plasticite du Systeme Nerveux, UPR2197 Institut de Neurobiologie Alfred Fessard C.N.R.S. Avenue de la Terrasse Gif-sur-Yvette Cédex- France
Country: France
Phone: 33- (0)169 82 34 30
Fax: 33- (0)169 82 34 47
Line Designation: gy


Research in the laboratory is dedicated to a comparative approach of the anatomical and physiological organization of the central nervous system in vertebrates and protochordates. The lab is made of five independent teams, working on different aspects of neurogenesis, brain regionalization, neuronal differentiation and neural crest development. The overall aim of these researches is to make a link between the nature of the genes and the processes and steps they are controlling during development, and understand how such mechanisms have been used, recruited, modified during evolution, to allow for selection of adaptive structures and functions in a whole organism.

Our team has a long-standing interest in the comparative study of catecholamine systems in the brain of protochodates (ascidia and amphioxus), and vertebrates (lamprey, teleost fish, xenopus, chicken). We are now using zebrafish as one of our favorite experimental model to study the gene networks involved in the differentiation of dopaminergic and cholinergic neurotransmitter systems in the zebrafish forebrain. We also use zebrafish as models to study pathophysiological features of Parkinson's disease and Alzheimer disease.

We are using are detailed anatomical studies (HIS and immunocytochemistry) of gene expression patterns over time, morpholino-induced changes in gene expression, transgenic lines expressing fluorescent reporters and fate mapping, to decipher the pathways to neurotransmitter differentiation. We are developing in vivo imaging means to study the dynamic of regulation of catecholamine receptors and transporters. We also use pharmacological treatment, as well as specific toxic lesion of dopamine systems, to better understand the multiple aspects of the "dopaminergic phenotype". Comparison of data in zebrafish with those obtained in other models is essential for identifying conserved, fundamental mechanisms of differentation, vs derived, adaptive features. The goal of our research is to provide a better understanding of the cellular mechanisms determining the variety of neurotransmitter phenotypes in the brain, and of the link between these differentiation mechanisms and the cell-specific degeneration taking place in Parkinson's disease and Alzheimer disease.

Ruuskanen, Jori Post-Doc Yamamoto, Kei Post-Doc Razi-Krajka, Florian Graduate Student
Coudouel, Sophie Research Staff Blin, Maryline Technical Staff Pasqualini, Catherine

Bloch, S., Hagio, H., Thomas, M., Heuzé, A., Hermel, J.M., Lasserre, E., Colin, I., Saka, K., Affaticati, P., Jenett, A., Kawakami, K., Yamamoto, N., Yamamoto, K. (2020) Non-thalamic origin of zebrafish sensory nuclei implies convergent evolution of visual pathways in amniotes and teleosts. eLIFE. 9:
Bloch, S., Froc, C., Pontiggia, A., Yamamoto, K. (2019) Existence of working memory in teleosts: establishment of the delayed matching-to-sample task in adult zebrafish. Behavioural brain research. 370:111924
Bloch, S., Thomas, M., Colin, I., Galant, S., Machado, E., Affaticati, P., Jenett, A., Yamamoto, K. (2019) Mesencephalic origin of the inferior lobe in zebrafish. BMC Biology. 17:22
Xavier, A.L., Fontaine, R., Bloch, S., Affaticati, P., Jenett, A., Demarque, M., Vernier, P., Yamamoto, K. (2017) Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). The Journal of comparative neurology. 525(9):2265-2283
Faure, E., Savy, T., Rizzi, B., Melani, C., Stašová, O., Fabrèges, D., Špir, R., Hammons, M., Čúnderlík, R., Recher, G., Lombardot, B., Duloquin, L., Colin, I., Kollár, J., Desnoulez, S., Affaticati, P., Maury, B., Boyreau, A., Nief, J.Y., Calvat, P., Vernier, P., Frain, M., Lutfalla, G., Kergosien, Y., Suret, P., Remešíková, M., Doursat, R., Sarti, A., Mikula, K., Peyriéras, N., Bourgine, P. (2016) A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage. Nature communications. 7:8674
Fontaine, R., Affaticati, P., Bureau, C., Colin, I., Demarque, M., Dufour, S., Vernier, P., Yamamoto, K., Pasqualini, C. (2015) The Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish. Endocrinology. 156(8):2934-48
Hinaux, H., Blin, M., Fumey, J., Legendre, L., Heuzé, A., Casane, D., Rétaux, S. (2015) Lens defects in Astyanax mexicanus cavefish: evolution of crystallins and a role for alphaA-crystallin. Developmental Neurobiology. 75(5):505-21
Affaticati, P., Yamamoto, K., Rizzi, B., Bureau, C., Peyriéras, N., Pasqualini, C., Demarque, M., Vernier, P. (2015) Identification of the optic recess region as a morphogenetic entity in the zebrafish forebrain. Scientific Reports. 5:8738
von Trotha, J.W., Vernier, P., Bally-Cuif, L. (2014) Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. The European journal of neuroscience. 40(9):3302-3315
Yamamoto, K., Mirabeau, O., Bureau, C., Blin, M., Michon-Coudouel, S., Demarque, M., and Vernier, P. (2013) Evolution of dopamine receptor genes of the D1 class in vertebrates. Mol. Biol. Evol.. 30(4):833-843
Fontaine, R., Affaticati, P., Yamamoto, K., Jolly, C., Bureau, C., Baloche, S., Gonnet, F., Vernier, P., Dufour, S., and Pasqualini, C. (2013) Dopamine Inhibits Reproduction in Female Zebrafish (Danio rerio) via Three Pituitary D2 Receptor Subtypes. Endocrinology. 154(2):807-818
Lange, M., Norton, W., Coolen, M., Chaminade, M., Merker, S., Proft, F., Schmitt, A., Vernier, P., Lesch, K.P., and Bally-Cuif, L. (2012) The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Molecular psychiatry. 17(9):946-954
Lange, M., Norton, W., Coolen, M., Chaminade, M., Merker, S., Proft, F., Schmitt, A., Vernier, P., Lesch, K.P., and Bally-Cuif, L. (2012) The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish. Molecular psychiatry. 17(9):855
Kalueff, A.V., Stewart, A.M., Kyzar, E.J., Cachat, J., Gebhardt, M., Landsman, S., Robinson, K., Maximino, C., Herculano, A.M., Jesuthasan, S., Wisenden, B., Bally-Cuif, L., Lange, M., Vernier, P., Norton, W., Tierney, K., Tropepe, V., and Neuhauss, S. (2012) Time to recognize zebrafish ‘affective’ behavior. Behaviour. 149:1019-1036
Yamamoto, K., Ruuskanen, J.O., Wullimann, M.F., and Vernier, P. (2011) Differential expression of dopaminergic cell markers in the adult zebrafish forebrain. The Journal of comparative neurology. 519(3):576-598
Yamamoto, K., Ruuskanen, J.O., Wullimann, M.F., and Vernier, P. (2010) Two tyrosine hydroxylase genes in vertebrates: New dopaminergic territories revealed in the zebrafish brain. Molecular and cellular neurosciences. 43(4):394-402
Osório, J., Mueller, T., Rétaux, S., Vernier, P., and Wullimann, M.F. (2010) Phylotypic expression of the bHLH genes Neurogenin2, Neurod, and Mash1 in the mouse embryonic forebrain. The Journal of comparative neurology. 518(6):851-871
Blin, M., Norton, W., Bally-Cuif, L., and Vernier, P. (2008) NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Molecular and cellular neurosciences. 39(4):592-604
Mueller, T., Vernier, P., and Wullimann, M.F. (2006) A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. The Journal of comparative neurology. 494(4):620-634
Ruuskanen, J.O., Peitsaro, N., Kaslin, J.V., Panula, P., and Scheinin, M. (2005) Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. Journal of neurochemistry. 94(6):1559-1569
Ruuskanen, J.O. (2005) Comparative molecular and functional analysis of human and zebrafish [alpha][sub 2]-adrenoceptors. Ph.D. Thesis. :78p
Ruuskanen, J.O., Laurila, J., Xhaard, H., Rantanen, V.V., Vuoriluoto, K., Wurster, S., Marjamaki, A., Vainio, M., Johnson, M.S., and Scheinin, M. (2005) Conserved structural, pharmacological and functional properties among the three human and five zebrafish alpha(2)-adrenoceptors. British journal of pharmacology. 144(2):165-177
Mueller, T., Vernier, P., and Wullimann, M.F. (2004) The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio. Brain research. 1011(2):156-169
Ruuskanen, J., Xhaard, H., Marjamäki, A., Salaneck, E., Salminen, T., Yan, Y.-L., Postlethwait, J.H., Johnson, M.S., Larhammar, D., and Scheinin, M. (2004) Identification of duplicated fourth {alpha}2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol. Biol. Evol.. 10:14-28