Gene
rubcn
- ID
- ZDB-GENE-100922-142
- Name
- rubicon autophagy regulator
- Symbol
- rubcn Nomenclature History
- Previous Names
-
- si:ch1073-167a23.1
- si:ch1073-280h16.1
- Type
- protein_coding_gene
- Location
- Chr: 22 Mapping Details/Browsers
- Description
- Predicted to enable phosphatidylinositol phosphate binding activity. Predicted to be involved in negative regulation of autophagosome maturation and negative regulation of endocytosis. Predicted to act upstream of or within autophagy. Predicted to be located in endosome. Predicted to be active in early endosome and late endosome. Human ortholog(s) of this gene implicated in autosomal recessive spinocerebellar ataxia 15. Orthologous to human RUBCN (rubicon autophagy regulator).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la014252Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la022352Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la028450Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa11314 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa12122 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa24212 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 6 of 6
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-rubcn | N/A | Masud et al., 2019 |
MO2-rubcn | N/A | (3) |
1 - 2 of 2
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal recessive spinocerebellar ataxia 15 | Alliance | Spinocerebellar ataxia, autosomal recessive 15 | 615705 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Autophagy and Host Defense Regulator | Rubicon Homology Domain | Rubicon, PI3K-binding domain | RUN domain | RUN domain superfamily |
---|---|---|---|---|---|---|---|
UniProtKB:A0A2R8RJG6 | InterPro | 905 | |||||
UniProtKB:A0A0N5E8A0 | InterPro | 930 | |||||
UniProtKB:F1Q4W5 | InterPro | 914 |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | Fosmid | CH1073-167A23 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-280H16 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_005174059 (1) | 4647 nt | ||
Genomic | GenBank:FO818743 (1) | 119728 nt | ||
Polypeptide | UniProtKB:A0A0N5E8A0 (1) | 930 aa |
- Forn-Cuní, G., Welvaarts, L., Stel, F.M., van den Hondel, C.J., Arentshorst, M., Ram, A., Meijer, A.H. (2022) Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis. Autophagy. 19(1):324-337
- Masud, S., Prajsnar, T.K., Torraca, V., Lamers, G.E.M., Benning, M., Van Der Vaart, M., Meijer, A.H. (2019) Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy. 15(5):796-812
- Masud, S., van der Burg, L., Storm, L., Prajsnar, T.K., Meijer, A.H. (2019) Rubicon-Dependent Lc3 Recruitment to Salmonella-Containing Phagosomes Is a Host Defense Mechanism Triggered Independently From Major Bacterial Virulence Factors. Frontiers in cellular and infection microbiology. 9:279
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 6 of 6
Show