Gene
chrm3a
- ID
- ZDB-GENE-090410-4
- Name
- cholinergic receptor, muscarinic 3a
- Symbol
- chrm3a Nomenclature History
- Previous Names
-
- DrM3A (1)
- Type
- protein_coding_gene
- Location
- Chr: 17 Mapping Details/Browsers
- Description
- Enables G protein-coupled acetylcholine receptor activity. Acts upstream of or within cardiac conduction system development. Predicted to be located in postsynaptic membrane. Predicted to be active in dendrite; plasma membrane; and synapse. Is expressed in eye. Human ortholog(s) of this gene implicated in bladder disease; chronic obstructive pulmonary disease; prune belly syndrome; and pulmonary fibrosis. Orthologous to human CHRM3 (cholinergic receptor muscarinic 3).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Nuckels et al., 2011
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 2 figures from Burczyk et al., 2019
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa42905 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
prune belly syndrome | Alliance | Prune belly syndrome | 100100 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | GPCR, rhodopsin-like, 7TM | G protein-coupled receptor, rhodopsin-like | Muscarinic acetylcholine receptor family | Muscarinic acetylcholine receptor M3 |
---|---|---|---|---|---|---|
UniProtKB:A0A8M9PNY8 | InterPro | 595 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
chrm3a-201
(1)
|
Ensembl | 3,277 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-97L21 | ||
Contained in | BAC | DKEYP-90G2 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_068218847 (1) | 4804 nt | ||
Genomic | GenBank:BX511254 (1) | 185109 nt | ||
Polypeptide | UniProtKB:A0A8M9PNY8 (1) | 595 aa |
- Yan, J., Fang, L., Ni, A., Xi, M., Li, J., Zhou, X., Qian, Q., Wang, Z.J., Wang, X., Wang, H. (2024) Long-Term Neurotoxic Effects and Alzheimer's Disease Risk of Early EHDPP Exposure in Zebrafish: Insights from Molecular Mechanisms to Adult Pathology. Environmental science & technology. 58(43):19152-19164
- Li, Y., Zhang, L., Mao, M., He, L., Wang, T., Pan, Y., Zhao, X., Li, Z., Mu, X., Qian, Y., Qiu, J. (2023) Multi-omics analysis of a drug-induced model of bipolar disorder in zebrafish. iScience. 26:106744106744
- Banu, S., Gaur, N., Nair, S., Ravikrishnan, T., Khan, S., Mani, S., Bharathi, S., Mandal, K., Kuram, N.A., Vuppaladadium, S., Ravi, R., Murthy, C.L.N., Quoseena, M., Babu, N.S., Idris, M.M. (2022) Transcriptomic and proteomic analysis of epimorphic regeneration in zebrafish caudal fin tissue. Genomics. 114(2):110300
- Yu, W.X., Li, Y.K., Xu, M.F., Xu, C.J., Chen, J., Wei, Y.L., She, Z.Y. (2022) Kinesin-5 Eg5 is essential for spindle assembly, chromosome stability and organogenesis in development. Cell death discovery. 8:490490
- Siregar, P., Audira, G., Feng, L.Y., Lee, J.H., Santoso, F., Yu, W.H., Lai, Y.H., Li, J.H., Lin, Y.T., Chen, J.R., Hsiao, C.D. (2021) Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation. toxins. 13(4):
- Burczyk, M.S., Burkhalter, M.D., Tena, T.C., Grisanti, L.A., Kauk, M., Matysik, S., Donow, C., Kustermann, M., Rothe, M., Cui, Y., Raad, F., Laue, S., Moretti, A., Zimmermann, W.H., Wess, J., Kühl, M., Hoffmann, C., Tilley, D.G., Philipp, M. (2019) Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish. JCI insight. 4(20):
- Arcanjo, C., Armant, O., Floriani, M., Cavalie, I., Camilleri, V., Simon, O., Orjollet, D., Adam-Guillermin, C., Gagnaire, B. (2018) Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages. Aquatic toxicology (Amsterdam, Netherlands). 200:114-126
- Pedersen, J.E., Bergqvist, C.A., Larhammar, D. (2018) Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates. eNeuro. 5(5):
- Thomas-Jinu, S., Gordon, P.M., Fielding, T., Taylor, R., Smith, B.N., Snowden, V., Blanc, E., Vance, C., Topp, S., Wong, C.H., Bielen, H., Williams, K.L., McCann, E.P., Nicholson, G.A., Pan-Vazquez, A., Fox, A.H., Bond, C.S., Talbot, W.S., Blair, I.P., Shaw, C.E., Houart, C. (2017) Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development. Neuron. 94(2):322-336.e5
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
1 - 10 of 14
Show