Gene
qrfpra
- ID
- ZDB-GENE-090313-105
- Name
- pyroglutamylated RFamide peptide receptor a
- Symbol
- qrfpra Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 13 Mapping Details/Browsers
- Description
- Enables G protein-coupled receptor activity and neuropeptide receptor binding activity. Acts upstream of or within locomotory behavior and sleep. Is active in cytoplasm and plasma membrane. Is expressed in hindbrain nucleus; midbrain nucleus; and ventral hypothalamic zone. Orthologous to human QRFPR (pyroglutamylated RFamide peptide receptor).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Chen et al., 2016
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 1 Figure from Chen et al., 2016
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
ct808 | Allele with one delins | Unknown | Unknown | TALEN | |
ct835 | Allele with one deletion | Unknown | Frameshift, Premature Stop | TALEN | |
la027431Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa24937 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa38948 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa42220 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 6 of 6
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
TALEN1-qrfpra | (2) | |
TALEN2-qrfpra | Chen et al., 2016 |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
No data available
Domain Details Per Protein
No data available
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
qrfpra-202
(1)
|
Ensembl | 940 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-26A17 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
Genomic | GenBank:AL929330 | 176635 nt |
- Wang, W., Jiang, C., Xu, Y., Ma, Q., Yang, J., Shi, Y., Zhou, N. (2020) Functional characterization of neuropeptide 26RFa receptors GPR103A and GPR103B in zebrafish, Danio rerio. Cellular Signalling. 73:109677
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Chen, A., Chiu, C.N., Mosser, E.A., Kahn, S., Spence, R., Prober, D.A. (2016) QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36(6):1823-40
- Larhammar, D., Xu, B., and Bergqvist, C.A. (2014) Unexpected multiplicity of QRFP receptors in early vertebrate evolution. Frontiers in neuroscience. 8:337
- Ukena, K., Osugi, T., Leprince, J., Vaudry, H., and Tsutsui, K. (2014) Molecular evolution of GPCRs: 26Rfa/GPR103. Journal of molecular endocrinology. 52(3):T119-31
- Chen, S., Oikonomou, G., Chiu, C.N., Niles, B.J., Liu, J., Lee, D.A., Antoshechkin, I., and Prober, D.A. (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic acids research. 41(4):2769-2778
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 8 of 8
Show